Displaying all 2 publications

Abstract:
Sort:
  1. Lim JZ, Mountstephens J, Teo J
    Front Neurorobot, 2021;15:796895.
    PMID: 35177973 DOI: 10.3389/fnbot.2021.796895
    CONTEXT: Eye tracking is a technology to measure and determine the eye movements and eye positions of an individual. The eye data can be collected and recorded using an eye tracker. Eye-tracking data offer unprecedented insights into human actions and environments, digitizing how people communicate with computers, and providing novel opportunities to conduct passive biometric-based classification such as emotion prediction. The objective of this article is to review what specific machine learning features can be obtained from eye-tracking data for the classification task.

    METHODS: We performed a systematic literature review (SLR) covering the eye-tracking studies in classification published from 2016 to the present. In the search process, we used four independent electronic databases which were the IEEE Xplore, the ACM Digital Library, and the ScienceDirect repositories as well as the Google Scholar. The selection process was performed by using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) search strategy. We followed the processes indicated in the PRISMA to choose the appropriate relevant articles.

    RESULTS: Out of the initial 420 articles that were returned from our initial search query, 37 articles were finally identified and used in the qualitative synthesis, which were deemed to be directly relevant to our research question based on our methodology.

    CONCLUSION: The features that could be extracted from eye-tracking data included pupil size, saccade, fixations, velocity, blink, pupil position, electrooculogram (EOG), and gaze point. Fixation was the most commonly used feature among the studies found.

  2. Lim JZ, Mountstephens J, Teo J
    Sensors (Basel), 2020 Apr 22;20(8).
    PMID: 32331327 DOI: 10.3390/s20082384
    The ability to detect users' emotions for the purpose of emotion engineering is currently one of the main endeavors of machine learning in affective computing. Among the more common approaches to emotion detection are methods that rely on electroencephalography (EEG), facial image processing and speech inflections. Although eye-tracking is fast in becoming one of the most commonly used sensor modalities in affective computing, it is still a relatively new approach for emotion detection, especially when it is used exclusively. In this survey paper, we present a review on emotion recognition using eye-tracking technology, including a brief introductory background on emotion modeling, eye-tracking devices and approaches, emotion stimulation methods, the emotional-relevant features extractable from eye-tracking data, and most importantly, a categorical summary and taxonomy of the current literature which relates to emotion recognition using eye-tracking. This review concludes with a discussion on the current open research problems and prospective future research directions that will be beneficial for expanding the body of knowledge in emotion detection using eye-tracking as the primary sensor modality.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links