Displaying all 4 publications

Abstract:
Sort:
  1. Tan CY, Lin CN, Ooi PT
    Transbound Emerg Dis, 2021 Nov;68(6):2915-2935.
    PMID: 34110095 DOI: 10.1111/tbed.14185
    Porcine circovirus 3 (PCV3) was first discovered in 2016, almost concomitantly by two groups of researchers in the United States. The novel case was reported in a group of sows with chronic reproductive problems with clinical presentation alike porcine dermatitis and nephropathy syndrome (PDNS), where metagenomic sequencing revealed a genetically divergent porcine circovirus designated PCV3. The discovery of PCV3 in a PDNS case, which used to be considered as part of PCVAD attributed to PCV2 (porcine circovirus 2), has garnered attention and effort in further research of the novel virus. Just when an infectious molecular DNA clone of PCV3 has been developed and successfully used in an in vivo pathogenicity study, yet another novel PCV strain surfaced, designated PCV4 (porcine circovirus 4). So far, PCV3 has been reported in domestic swine population globally at low to moderate prevalence, from almost all sample types including organ tissues, faecal, semen and colostrum samples. PCV3 has been associated with a myriad of clinical presentations, from PDNS to porcine respiratory disease complex (PRDC). This review paper summarizes the studies on PCV3 to date, with focus on diagnosis.
  2. Lin CN, Okabayashi T, Tummaruk P, Ooi PT
    Front Vet Sci, 2022;9:1122679.
    PMID: 36686156 DOI: 10.3389/fvets.2022.1122679
  3. Lin CN, Chan KR, Ooi EE, Chiou MT, Hoang M, Hsueh PR, et al.
    Viruses, 2021 07 30;13(8).
    PMID: 34452372 DOI: 10.3390/v13081507
    Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus in humans, has expanded globally over the past year. COVID-19 remains an important subject of intensive research owing to its huge impact on economic and public health globally. Based on historical archives, the first coronavirus-related disease recorded was possibly animal-related, a case of feline infectious peritonitis described as early as 1912. Despite over a century of documented coronaviruses in animals, the global animal industry still suffers from outbreaks. Knowledge and experience handling animal coronaviruses provide a valuable tool to complement our understanding of the ongoing COVID-19 pandemic. In this review, we present an overview of coronaviruses, clinical signs, COVID-19 in animals, genome organization and recombination, immunopathogenesis, transmission, viral shedding, diagnosis, treatment, and prevention. By drawing parallels between COVID-19 in animals and humans, we provide perspectives on the pathophysiological mechanisms by which coronaviruses cause diseases in both animals and humans, providing a critical basis for the development of effective vaccines and therapeutics against these deadly viruses.
  4. Tan CY, Lee KC, Chiou MT, Lin CN, Ooi PT
    Vet World, 2023;16(7):1444-1450.
    PMID: 37621535 DOI: 10.14202/vetworld.2023.1444-1450
    BACKGROUND AND AIM: Porcine circovirus 3 (PCV3) was recently reported in Malaysian commercial pig population in 2020 by conventional polymerase chain reaction (PCR), revealing a molecular prevalence of 17.02% in the sampled domestic pig population. This study aims to describe a chromogenic in situ hybridization (ISH) technique using digoxigenin (DIG)-labeled cloned PCV3 open reading frame 1 (ORF1) fragment DNA to detect and localize the PCV3 antigen in formalin-fixed, paraffin-embedded lung, and lymphoid tissue specimens.

    MATERIALS AND METHODS: Since PCV3 was mainly detected in lung and lymphoid tissues, we obtained tissue specimens from these organs from the previous Malaysian PCV3 study. Digoxigenin-labeled ISH probes were designed to target a 69 bp region of PCV3 ORF1 spanning from the nucleotide positions (282-350).

    RESULTS: Light microscopy analysis revealed that chromogenic staining of PCV3 antigens was visualized within the cytoplasm of pneumocytes and lymphocytes, indicating positive ISH results. The results of molecular detection of PCV3 using PCR and ISH showed a high agreement of 90.91%, including for the negative PCV3 status for all samples.

    CONCLUSION: This study reports a chromogenic ISH technique using DIG-labeled probes targeting PCV3 ORF1 to detect PCV3 antigens in lung and lymphoid tissues. Despite the limited availability of PCV3 antibodies, ISH remains relevant for investigating PCV3 replication and pathogenesis and can be used complementarily with PCR for evaluating the localization of antigens in infected tissues.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links