Displaying all 3 publications

Abstract:
Sort:
  1. Nor Azura Md Ghani, Liong, Choong-Yeun, Abdul Aziz Jemain
    MyJurnal
    This paper is an attempt to perceive and order guns using a two-layer neural system model taking into account a feedforward backpropagation calculation. Numerical properties from the joined pictures were utilised for enhanced gun characterisation execution. Inputs of the system model were 747 pictures blackmailed from the discharging pin impression of five differing guns model, Parabellum Vector SPI 9mm. Components created from the dataset were further grouped into preparation set (523 components), testing set (112 components) and acceptance set (112 components). Under managed learning, exact results exhibited that a two-layer BPNN of 11-11-5 arrangement, with tansig/purelin exchange capacities and a “trainlm” preparing calculation, had productively delivered 87% right aftereffect of grouping. The order result serves to be progressed and contrasted with the previous works. Finally, the joined picture districts can offer some accommodating data on the grouping of gun.
  2. Lee LC, Liong CY, Jemain AA
    Analyst, 2018 Jul 23;143(15):3526-3539.
    PMID: 29947623 DOI: 10.1039/c8an00599k
    Partial least squares-discriminant analysis (PLS-DA) is a versatile algorithm that can be used for predictive and descriptive modelling as well as for discriminative variable selection. However, versatility is both a blessing and a curse and the user needs to optimize a wealth of parameters before reaching reliable and valid outcomes. Over the past two decades, PLS-DA has demonstrated great success in modelling high-dimensional datasets for diverse purposes, e.g. product authentication in food analysis, diseases classification in medical diagnosis, and evidence analysis in forensic science. Despite that, in practice, many users have yet to grasp the essence of constructing a valid and reliable PLS-DA model. As the technology progresses, across every discipline, datasets are evolving into a more complex form, i.e. multi-class, imbalanced and colossal. Indeed, the community is welcoming a new era called big data. In this context, the aim of the article is two-fold: (a) to review, outline and describe the contemporary PLS-DA modelling practice strategies, and (b) to critically discuss the respective knowledge gaps that have emerged in response to the present big data era. This work could complement other available reviews or tutorials on PLS-DA, to provide a timely and user-friendly guide to researchers, especially those working in applied research.
  3. Md Ghani NA, Liong CY, Jemain AA
    Forensic Sci Int, 2010 May 20;198(1-3):143-9.
    PMID: 20211535 DOI: 10.1016/j.forsciint.2010.02.011
    The task of identifying firearms from forensic ballistics specimens is exacting in crime investigation since the last two decades. Every firearm, regardless of its size, make and model, has its own unique 'fingerprint'. These fingerprints transfer when a firearm is fired to the fired bullet and cartridge case. The components that are involved in producing these unique characteristics are the firing chamber, breech face, firing pin, ejector, extractor and the rifling of the barrel. These unique characteristics are the critical features in identifying firearms. It allows investigators to decide on which particular firearm that has fired the bullet. Traditionally the comparison of ballistic evidence has been a tedious and time-consuming process requiring highly skilled examiners. Therefore, the main objective of this study is the extraction and identification of suitable features from firing pin impression of cartridge case images for firearm recognition. Some previous studies have shown that firing pin impression of cartridge case is one of the most important characteristics used for identifying an individual firearm. In this study, data are gathered using 747 cartridge case images captured from five different pistols of type 9mm Parabellum Vektor SP1, made in South Africa. All the images of the cartridge cases are then segmented into three regions, forming three different set of images, i.e. firing pin impression image, centre of firing pin impression image and ring of firing pin impression image. Then geometric moments up to the sixth order were generated from each part of the images to form a set of numerical features. These 48 features were found to be significantly different using the MANOVA test. This high dimension of features is then reduced into only 11 significant features using correlation analysis. Classification results using cross-validation under discriminant analysis show that 96.7% of the images were classified correctly. These results demonstrate the value of geometric moments technique for producing a set of numerical features, based on which the identification of firearms are made.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links