Displaying all 4 publications

Abstract:
Sort:
  1. Cheng WY, Liu MT
    Heliyon, 2018 Feb;4(2):e00518.
    PMID: 29560442 DOI: 10.1016/j.heliyon.2018.e00518
    Sixteen mumps virus (MuV) sequences collected in Taiwan between 2006 and 2016 were characterized as genotype F (n = 1), G (n = 7), H (n = 4), J (n = 2), and K (n = 2). Mumps genotype F strain was imported from China in 2008 which was in accordance with the epidemic genotype in China. The Philippines was indicated as export country of three genotype H strains in 2007-2010 and Vietnam as export country of one genotype K strain in 2016 that matched with genotypes described in previous reports. Four strains of genotype G were imported from Japan, Thailand, Malaysia and Myanmar individually indicated that genotype G spreads widely in Asia as well as in the global. In this study, mumps strains of genotype G was first reported in relation to import from Malaysia and Myanmar. Furthermore, Indonesia was referred to export MuV of genotype J in 2007 for the first time. Molecular genotyping benefits the differentiation of circulating mumps viruses and can be used to investigate the transmission pathways. The dynamic genotypes of imported cases revealed the epidemic genotypes in nearby countries.
  2. Cheng WY, Wang HC, Wu HS, Liu MT
    J Med Virol, 2016 May;88(5):746-53.
    PMID: 26400063 DOI: 10.1002/jmv.24392
    In Taiwan, although the coverage rate of two doses of measles-containing vaccine has been maintained at over 95% since 2001, measles outbreaks occurred in 2002, 2009, and 2011. The present study reports that 43 cases were confirmed by laboratory testing in Taiwan in 2012-2014 and that adults have emerged as one of groups susceptible to measles virus (MV) infection, who may have discrepant humoral immune reactions-indicated by the level of IgM and IgG antibodies compared to a naïve, susceptible measles case. Thirty-seven of 43 cases confirmed by RT-PCR were further characterized by genotyping. In Taiwan, genotype H1 was the major strain in circulation prior to 2010, while D9 was the most frequently detected MV genotype between 2010 and 2011. The genotyping data collected between 2012 and 2014 revealed that H1 rebounded in 2012 after an absence in 2011 and was imported from China and Vietnam. In 2014, genotype B3 first appeared in Taiwan following import from the Philippines and became the most frequently detected strain. Genotype D8, linked to importation from various countries, including India, Indonesia, Thailand, and Vietnam, showed sequence divergence. D9 was imported from Malaysia in 2014. The MV genotypes detected in Taiwan reflected the genotypes of circulating endemic measles strains in neighboring countries. A significant rise in the number of measles cases and in measles with genotypes imported from surrounding countries indicated that measles resurged in Asia in 2014. J. Med. Virol. 88:746-753, 2016. © 2015 Wiley Periodicals, Inc.
  3. Cheng WY, Wang HC, Liu MT, Wu HS
    J Med Virol, 2013 Apr;85(4):745-53.
    PMID: 23417619 DOI: 10.1002/jmv.23451
    Rubella has been listed as a mandatory notifiable disease in Taiwan since 1988. Because of high coverage rates with an effective vaccine, rubella cases have decreased dramatically in Taiwan since 1994. However, rubella outbreaks still occur due to imported transmission. Five large clusters were detected in Taiwan from 2007 to 2011. In 2007, one cluster was caused by rubella genotype 1E viruses that were imported from Vietnam, whereas another cluster was caused by genotype 2B viruses and was untraceable. In 2008, two clusters were caused by different lineages of genotype 1E viruses that were imported from Malaysia. In 2009, a cluster that was caused by genotype 2B viruses was associated with imported cases from Vietnam. The rubella viruses from 124 confirmed cases from 2005 to 2011 were characterized, and the data revealed that these viruses were distributed in the following four genotypes: 1E (n = 56), 1h (n = 1), 1j (n = 4), and 2B (n = 63). Of these viruses, 93 (75%) were associated with imported cases, and 43 of 56 genotype 1E viruses were associated with imported cases from China, Vietnam, Malaysia, and Indonesia. One genotype 1h virus was imported from Belarus, and three of four genotype 1j viruses were imported from the Philippines. Of 63 rubella genotype 2B viruses, 46 were imported from Vietnam, Thailand, Malaysia, China, Germany, and South Africa. Molecular surveillance allows for the differentiation of circulating rubella viruses and can be used to investigate transmission pathways, which are important to identify the interruption of endemic virus transmission.
  4. Chen WT, Wang CW, Lu CW, Chen CB, Lee HE, Hung SI, et al.
    J Invest Dermatol, 2018 07;138(7):1546-1554.
    PMID: 29458119 DOI: 10.1016/j.jid.2018.02.004
    Dapsone-induced hypersensitivity reactions may cause severe cutaneous adverse reactions, such as drug reaction with eosinophilia and systemic symptoms (DRESS). It has been reported that HLA-B*13:01 is strongly associated with dapsone-induced hypersensitivity reactions among leprosy patients. However, the phenotype specificity and detailed immune mechanism of HLA-B*13:01 remain unclear. We investigated the genetic predisposition, HLA-B*13:01 function, and cytotoxic T cells involved in the pathogenesis of dapsone-induced severe cutaneous adverse reactions. We enrolled patients from Taiwan and Malaysia with DRESS and maculopapular eruption with chronic inflammatory dermatoses. Our results showed that the HLA-B*13:01 allele was present in 85.7% (6/7) of patients with dapsone DRESS (odds ratio = 49.64, 95% confidence interval = 5.89-418.13; corrected P = 2.92 × 10-4) but in only 10.8% (73/677) of general population control individuals in Taiwan. The level of granulysin, the severe cutaneous adverse reaction-specific cytotoxic protein released from cytotoxic T cells, was increased in both the plasma of DRESS patients (36.14 ± 9.02 ng/ml, P < 0.05) and in vitro lymphocyte activation test (71.4%, 5/7 patients) compared with healthy control individuals. Furthermore, dapsone-specific cytotoxic T cells were significantly activated when co-cultured with HLA-B*13:01-expressing antigen presenting cells in the presence of dapsone (3.9-fold increase, compared with cells with no HLA-B*13:01 expression; P < 0.01). This study indicates that HLA-B*13:01 is strongly associated with dapsone DRESS and describes a functional role for the HLA-restricted immune mechanism induced by dapsone.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links