Southeast Asian ovalocytosis (SAO) is a hereditary condition that is widespread in parts of Southeast Asia. The ovalocytic erythrocytes are rigid and resistant to invasion by various malarial parasites. We have previously found that the underlying defect in SAO involves band 3 protein, the major transmembrane protein, which has abnormal structure and function. We now report two linked mutations in the erythrocyte band 3 gene in SAO: (i) a deletion of codons 400-408 and (ii) a substitution, A----G, in the first base of codon 56 leading to substitution of Lys-56 by Glu-56. The first defect leads to a deletion of nine amino acids in the boundary of cytoplasmic and membrane domains of band 3. This defect has been detected in all 30 ovalocytic subjects from Malaysia, the Philippines, and two unrelated coastal regions of Papua New Guinea, whereas it was absent in all 30 controls from Southeast Asia and 20 subjects of different ethnic origin from the United States. The Lys-56----Glu substitution has likewise been found in all SAO subjects. However, it has also been detected in 5 of the 50 control subjects, suggesting that it represents a linked polymorphism. We conclude that the deletion of codons 400-408 in the band 3 gene constitutes the underlying molecular defect in SAO.
Graphene (Gr)/gold (Au) and graphene-oxide (GO)/Au nanocomposites (NCPs) were synthesized by performing pulsed-laser-induced photolysis (PLIP) on hydrogen peroxide and chloroauric acid (HAuCl4) that coexisted with Gr or GO in an aqueous solution. A 3-month-long aqueous solution stability was observed in the NCPs synthesized without using surfactants and additional processing. The synthesized NCPs were characterized using absorption spectroscopy, transmission electron microscopy, Raman spectroscopy, energy dispersive spectroscopy, and X-ray diffraction to prove the existence of hybrid Gr/Au or GO/Au NCPs. The synthesized NCPs were further evaluated using the photocatalytic reaction of methylene blue (MB), a synthetic dye, under UV radiation, visible light (central wavelength of 470 nm), and full spectrum of solar light. Both Gr/Au and GO/Au NCPs exhibited photocatalytic degradation of MB under solar light illumination with removal efficiencies of 92.1% and 94.5%, respectively.