Displaying all 3 publications

Abstract:
Sort:
  1. Rashid SS, Liu YQ
    Sci Total Environ, 2021 Feb 20;756:143849.
    PMID: 33248794 DOI: 10.1016/j.scitotenv.2020.143849
    The occurrence of various micropollutants such as pharmaceuticals personal care products, endocrine disrupting chemicals (PPCPs/EDCs) and metals in municipal wastewater, and their poor removal efficiencies can lead to toxicity impact on humans, and freshwater and terrestrial ecosystems. Life cycle assessment is an efficient and effective tool to evaluate the environmental impact of wastewater treatment plants, but guidelines for toxicity assessment are lacking due to the complexity. This study aims to evaluate both life cycle inventory by including metals and PEC, and life cycle toxicity assessment (LCIA) methods namely CML-IA, Recipe, USEtox, EDIP 2003 and IMPACT 2002+ in midpoint category with a large centralised wastewater treatment plant in Malaysia as a case study. The removal efficiencies of metals and PPCPs/EDCs in the wastewater ranged from 9% to 99% and no clear patterns were found about occurrence and removal efficiencies of metals and PPCPs/EDCs in developing and developed countries. The inclusion of metals and PPCPs/EDCs in effluent resulted in 76% increase in freshwater ecotoxicity potential (FEP) and 88% increase in terrestrial ecotoxicity potential (TEP) while only 4% increase in human toxicity potential (HTP). The results indicate the importance of including direct emissions such as metals and PPCPs/EDCs even in low-strength municipal wastewater for environmental toxicity assessment. The comparison of five LCIA methods suggests that HTP assessment is more challenging due to inconsistency between five LCIA methods while CML-IA, Recipe, and IMPACT 2002+ achieved consistent human toxicity and ecotoxicity assessment results in the WWTP. The results highlight the importance of sampling and inclusion of metals and PPCPs/EDCs data especially prioritised micropollutants for life cycle toxicity assessment and recommends LCIA methods for ecotoxicity assessment of WWTPs in the current scientific development situation on toxicity studies, which can provide guidance to researchers for life cycle toxicity assessment of wastewater treatment.
  2. Rashid SS, Liu YQ, Zhang C
    Sci Total Environ, 2020 Dec 20;749:141465.
    PMID: 32827824 DOI: 10.1016/j.scitotenv.2020.141465
    Although nutrient removal and recovery from municipal wastewater are desirable to protect phosphorus resource and water-bodies from eutrophication, it is unclear how much environmental and economic benefits and burdens it might cause. This study evaluated the environmental and economic life cycle performance of three different upgraded Processes A, B and C with commercially available technologies for nutrient removal and phosphorus recovery based on an existing Malaysian wastewater treatment plant with a sequencing batch reactor technology and diluted municipal wastewater. It is found that the integration of nutrient removal, phosphorus recovery and electricity generation in all upgraded processes reduced eutrophication potential by 62-76%, and global warming potential by 7-22%, which, however, were gained at the cost of increases in human toxicity, acidification, abiotic depletion (fossil fuel) and freshwater ecotoxicity potentials by an average of 23%. New technologies for nutrient removal and phosphorus recovery are thus needed to achieve holistic rather than some environmental benefits at the expense of others. In addition, the study on two different functional units (FU), i.e. per m3 treated wastewater and per kg struvite recovered, shows that FU affected environmental assessment results, but the upgraded Process C had the least overall environmental burden with either of FUs, suggesting the necessity to use different functional units when comparing and selecting different technologies with two functions such as wastewater treatment and struvite production to confirm the best process configuration. The total life cycle costs of Processes A, B and C were 10.7%, 29.8% and 28.1%, respectively, higher than the existing process due to increased capital and operating costs. Therefore, a trade-off between environmental benefits and cost has to be balanced for technology selection or new integrated technologies have to be developed to achieve environmentally sustainable wastewater treatment economically.
  3. Chang L, Chong WT, Yau YH, Cui T, Wang XR, Pei F, et al.
    PMID: 37360559 DOI: 10.1007/s13762-023-04994-7
    Air quality in subway systems is crucial as it affects the health of passengers and staff. Although most tests of PM2.5 concentrations in subway stations have taken place in public areas, PM2.5 is less understood in workplaces. Few studies have estimated the cumulative inhaled dose of passengers based on real-time changes in PM2.5 concentrations as they commute. To clarify the above issues, this study first measured PM2.5 concentrations in four subway stations in Changchun, China, where measuring points included five workrooms. Then, passengers' exposure to PM2.5 during the whole subway commute (20-30 min) was measured and segmented inhalation was calculated. The results showed that PM2.5 concentration in public places ranged from 50 to 180 μg/m3, and was strongly correlated with outdoors. While the PM2.5 average concentration in workplaces was 60 µg/m3, and it was less affected by outdoor PM2.5 concentration. Passenger's cumulative inhalations in single commuting were about 42 μg and 100 μg when the outdoor PM2.5 concentrations were 20-30 μg/m3 and 120-180 μg/m3, respectively. The PM2.5 inhalation in carriages accounted for the largest proportion of the entire commuting, about 25-40%, because of the longer exposure time and higher PM2.5 concentrations. It is recommended to improve the tightness of the carriage and filter the fresh air to improve the air quality inside. The average daily PM2.5 inhaled by staff was 513.53 μg, which was 5-12 times higher than that of passengers. Installing air purification devices in workplaces and reminding staff to take personal protection can positively protect their health.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links