Displaying all 2 publications

Abstract:
Sort:
  1. Beghi E, Ivashynka A, Logroscino G, de Oliveira FF, Fleisher JE, Dumitrascu OM, et al.
    J Neurol, 2023 Nov;270(11):5162-5170.
    PMID: 37682315 DOI: 10.1007/s00415-023-11981-y
    BACKGROUND: Neurological manifestations frequently occur in individuals with COVID-19, manifesting during the acute phase, persisting beyond the resolution of acute symptoms, and appearing days or weeks after the initial onset of COVID-19 symptoms. However, predicting the incidence, course, and outcome of these neurological manifestations at the individual patient level remains challenging. Biases in study design and limitations in data collection may contribute to the inconsistency and limited validity of the reported findings. Herein, we focused on critically appraising pitfalls and biases of prior reports and provide guidance for improving the quality and standardization of future research. Patients with COVID-19 exhibit diverse demographic features, sociocultural backgrounds, lifestyle habits, and comorbidities, all of which can influence the severity and progression of the infection and its impact on other organ systems. Overlooked or undocumented comorbidities and related treatments may contribute to neurological sequelae, which may not solely be attributable to COVID-19. It is crucial to consider the potential side effects of vaccines in relation to neurological manifestations.

    CONCLUSION: To investigate neurological manifestations of COVID-19, it is essential to employ valid and reliable diagnostic criteria and standard definitions of the factors of interest. Although population-based studies are lacking, well-defined inception cohorts, including hospitalized individuals, outpatients, and community residents, can serve as valuable compromises. These cohorts should be evaluated for the presence of common comorbidities, alongside documenting the primary non-neurological manifestations of the infectious disease. Lastly, patients with COVID-19 should be followed beyond the acute phase to assess the persistence, duration, and severity of neurological symptoms, signs, or diseases.

  2. Wang H, Liddell CA, Coates MM, Mooney MD, Levitz CE, Schumacher AE, et al.
    Lancet, 2014 Sep 13;384(9947):957-79.
    PMID: 24797572 DOI: 10.1016/S0140-6736(14)60497-9
    BACKGROUND: Remarkable financial and political efforts have been focused on the reduction of child mortality during the past few decades. Timely measurements of levels and trends in under-5 mortality are important to assess progress towards the Millennium Development Goal 4 (MDG 4) target of reduction of child mortality by two thirds from 1990 to 2015, and to identify models of success.

    METHODS: We generated updated estimates of child mortality in early neonatal (age 0-6 days), late neonatal (7-28 days), postneonatal (29-364 days), childhood (1-4 years), and under-5 (0-4 years) age groups for 188 countries from 1970 to 2013, with more than 29,000 survey, census, vital registration, and sample registration datapoints. We used Gaussian process regression with adjustments for bias and non-sampling error to synthesise the data for under-5 mortality for each country, and a separate model to estimate mortality for more detailed age groups. We used explanatory mixed effects regression models to assess the association between under-5 mortality and income per person, maternal education, HIV child death rates, secular shifts, and other factors. To quantify the contribution of these different factors and birth numbers to the change in numbers of deaths in under-5 age groups from 1990 to 2013, we used Shapley decomposition. We used estimated rates of change between 2000 and 2013 to construct under-5 mortality rate scenarios out to 2030.

    FINDINGS: We estimated that 6·3 million (95% UI 6·0-6·6) children under-5 died in 2013, a 64% reduction from 17·6 million (17·1-18·1) in 1970. In 2013, child mortality rates ranged from 152·5 per 1000 livebirths (130·6-177·4) in Guinea-Bissau to 2·3 (1·8-2·9) per 1000 in Singapore. The annualised rates of change from 1990 to 2013 ranged from -6·8% to 0·1%. 99 of 188 countries, including 43 of 48 countries in sub-Saharan Africa, had faster decreases in child mortality during 2000-13 than during 1990-2000. In 2013, neonatal deaths accounted for 41·6% of under-5 deaths compared with 37·4% in 1990. Compared with 1990, in 2013, rising numbers of births, especially in sub-Saharan Africa, led to 1·4 million more child deaths, and rising income per person and maternal education led to 0·9 million and 2·2 million fewer deaths, respectively. Changes in secular trends led to 4·2 million fewer deaths. Unexplained factors accounted for only -1% of the change in child deaths. In 30 developing countries, decreases since 2000 have been faster than predicted attributable to income, education, and secular shift alone.

    INTERPRETATION: Only 27 developing countries are expected to achieve MDG 4. Decreases since 2000 in under-5 mortality rates are accelerating in many developing countries, especially in sub-Saharan Africa. The Millennium Declaration and increased development assistance for health might have been a factor in faster decreases in some developing countries. Without further accelerated progress, many countries in west and central Africa will still have high levels of under-5 mortality in 2030.

    FUNDING: Bill & Melinda Gates Foundation, US Agency for International Development.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links