The science of foot pressure studies the forces acting on the bottom and different regions of the foot along with the pressure exerted on the plantar surface with the interacting surface in contact. The information derived gave impact to human biomechanical assessment on body balance and ergonomics posture during gait. Various experiments designed at generating foot pressure data returns only with limited knowledge generated. Obviously, the procedure for experiment design needs to be properly understood from the foot morphology aspects; healthiness, footwear, surface in contact, load and forces impacts, and the foot sensitivity as well as the specification for the foot pressure. This paper reviews the proper preliminary experimental setups for foot pressure measurement analysis during static or dynamic gait. The strength and limitations of recent devices used and considerable variables are also discussed. The overall review explains that the comfortable natural gait in relation to the aspects of sensitivity, load, time duration, and stability are the standard considerations for plantar pressure experiments.
Good badminton lunge skills have been quantitatively described using biomechanical attributes at both static and dynamic phases. The measurement of badminton lunge attributes has often been complicated by various experimental protocols used. No review article has considered or critically reviewed the attributes that align with badminton lunge performance. This paper, hence, presents a review of badminton lunge postures governed by various determinant attributes. This review was performed by involving a number of relevant search engines. A total of 21 articles that fulfilled the predefined inclusion criteria were analysed. The lunge determinant attributes, such as time, lunge distance, plantar, ground reaction force, joint, dynamic balance and muscle attributes, had been examined. Contradictory findings in the dynamic balance attributes, specifically the relative displacement between the centre of mass and the centre of pressure, are presented in this paper. The findings showed that time, lunge distance and ground reaction force determined lunge performance. On the other hand, plantar, joint, dynamic balance and muscle attributes appeared useful in minimising injuries to ensure efficient lunge performance.