Displaying all 5 publications

Abstract:
Sort:
  1. Zhu C, Lv W, Hong S, Han M, Song W, Liu C, et al.
    Sci Total Environ, 2024 May 04;931:172962.
    PMID: 38705306 DOI: 10.1016/j.scitotenv.2024.172962
    Perfluorooctane sulfonate (PFOS) is a typical persistent organic pollutant that is characterized by environmental persistence, bioaccumulation, and toxicity. In this study, we investigated the gut microbial response of the red claw crayfish Cherax quadricarinatus after 28 days of exposure to 0 ng/L, 1 ng/L, 10 μg/L, or 10 mg/L of PFOS as a stressor. We measured oxidative stress-related enzyme activities and expression of molecules related to detoxification mechanisms to evaluate the toxic effects of PFOS. We found that PFOS disturbed microbial homeostasis in the gut of C. quadricarinatus, resulting in increased abundance of the pathogen Shewanella and decreased abundance of the beneficial bacterium Lactobacillus. The latter especially disturbed amino acid transport and carbohydrate transport. We also found that the activities of glutathione S-transferase and glutathione peroxidase were positively correlated with the expression levels of cytochrome P450 genes (GST1-1, GSTP, GSTK1, HPGDS, UGT5), which are products of PFOS-induced oxidative stress and play an antioxidant role in the body. The results of this study provided valuable ecotoxicological data to better understand the biological fate and effects of PFOS in C. quadricarinatus.
  2. Zhu C, Zhou W, Han M, Yang Y, Li Y, Jiang Q, et al.
    Sci Total Environ, 2023 Sep 15;891:164460.
    PMID: 37247739 DOI: 10.1016/j.scitotenv.2023.164460
    Microplastics and nanoplastics (MPs and NPs) are abundant, persistent, and widespread environmental pollutants that are of increasing concern as they pose a serious threat to ecosystems and aquatic species. Identifying the ecological effects of NPs pollution requires understanding the effects of changing nanoplastics concentrations in aquatic organisms. Monopterus albus were orally fed three different concentrations of 100 nm polystyrene nanoplastics (PS-NPs): 0.05 %, 0.5 %, and 1 % of the feed for 28 days. Nanoplastics significantly activated the PPAR signaling pathway, Acyl-CoA oxidase 1 (ACOX1), carnitine palmitoyltransferase 1a (CPT1A), angiopoietin-like 4 (ANGPTL4), and phosphoenolpyruvate carboxykinase (PCK) at the mRNA level, resulting in disturbed lipid metabolism. Glutathione peroxidase (GSH-px) activity, catalase (CAT) activity, and malondialdehyde (MDA) were significantly elevated in the high nanoplastics-feeding exposure group, leading to oxidative stress in the liver. Overexpression of the cytokines genes Interleukin 1 (IL1B) and Interleukin-8 (IL8), Tumor necrosis factor alpha (TNF-α), activation of MAPK signaling pathway, and increased gene expression of c-Jun amino-terminal kinases (JNK) and p38 indicate that exposure to NPs may lead to hepatopancreas apoptosis through oxidative stress and inflammation. In summary, dietary PS-NPs exposure alters hepatic glycolipid metabolism, triggering inflammatory responses and apoptosis in M. albus. The results of this study provide valuable ecotoxicological data for a better understanding of the biological fate and effects of nanoplastics in M. albus.
  3. Zhu T, Yao C, Hong S, Song W, Zanuri NM, Lv W, et al.
    Sci Total Environ, 2024 Nov 15;951:175680.
    PMID: 39173758 DOI: 10.1016/j.scitotenv.2024.175680
    We investigated the effects of different nanoplastic (NP, size = 100 nm) concentrations on red crayfish (Cherax quadricarinatus) and examined toxicity mechanisms. We established four concentration groups (control (CK): 0 μg/L; Low: 100 μg/L; Medium: 500 μg/L; and High: 1000 μg/L) and analyzed toxicity effects in C. quadricarinatus hepatopancreas using histopathological, transcriptomic, metabolomic, and fluorescence methods. NP exposure caused histological lesions and oxidative stress in hepatopancreas, and also significantly decreased glutathione (GSH) (P 
  4. Wu C, Zhong L, Yeh PJ, Gong Z, Lv W, Chen B, et al.
    Sci Total Environ, 2024 Jan 01;906:167632.
    PMID: 37806579 DOI: 10.1016/j.scitotenv.2023.167632
    Drought affects vegetation growth to a large extent. Understanding the dynamic changes of vegetation during drought is of great significance for agricultural and ecological management and climate change adaptation. The relations between vegetation and drought have been widely investigated, but how vegetation loss and restoration in response to drought remains unclear. Using the standardized precipitation evapotranspiration index (SPEI) and the normalized difference vegetation index (NDVI) data, this study developed an evaluation framework for exploring the responses of vegetation loss and recovery to meteorological drought, and applied it to the humid subtropical Pearl River basin (PRB) in southern China for estimating the loss and recovery of three vegetation types (forest, grassland, cropland) during drought using the observed NDVI changes. Results indicate that vegetation is more sensitive to drought in high-elevation areas (lag time  8 months). Vegetation loss (especially in cropland) is found to be more sensitive to drought duration than drought severity and peak. No obvious linear relationship between drought intensity and the extent of vegetation loss is found. Regardless of the intensity, drought can cause the largest probability of mild loss of vegetation, followed by moderate loss, and the least probability of severe loss. Large spatial variability in the probability of vegetation loss and recovery time is found over the study domain, with a higher probability (up to 50 %) of drought-induced vegetation loss and a longer recovery time (>7 months) mostly in the high-elevation areas. Further analysis suggests that forest shows higher but cropland shows lower drought resistance than other vegetation types, and grassland requires a shorter recovery time (4.2-month) after loss than forest (5.1-month) and cropland (4.8-month).
  5. Li H, Peng Z, Zhu J, Zhao W, Huang Y, An R, et al.
    BMC Med, 2024 May 16;22(1):199.
    PMID: 38755585 DOI: 10.1186/s12916-024-03409-9
    BACKGROUND: The prospective phase III multi-centre L-MOCA trial (NCT03534453) has demonstrated the encouraging efficacy and manageable safety profile of olaparib maintenance therapy in the Asian (mainly Chinese) patients with platinum-sensitive relapsed ovarian cancer (PSROC). In this study, we report the preplanned exploratory biomarker analysis of the L-MOCA trial, which investigated the effects of homologous recombination deficiency (HRD) and programmed cell death ligand 1 (PD-L1) expression on olaparib efficacy.

    METHODS: HRD status was determined using the ACTHRD assay, an enrichment-based targeted next-generation sequencing assay. PD-L1 expression was assessed by SP263 immunohistochemistry assay. PD-L1 expression positivity was defined by the PD-L1 expression on ≥ 1% of immune cells. Kaplan-Meier method was utilised to analyse progression-free survival (PFS).

    RESULTS: This exploratory biomarker analysis included 225 patients and tested HRD status [N = 190; positive, N = 125 (65.8%)], PD-L1 expression [N = 196; positive, N = 56 (28.6%)], and BRCA1/2 mutation status (N = 219). The HRD-positive patients displayed greater median PFS than the HRD-negative patients [17.9 months (95% CI: 14.5-22.1) versus 9.2 months (95% CI: 7.5-13.8)]. PD-L1 was predominantly expressed on immune cells. Positive PD-L1 expression on immune cells was associated with shortened median PFS in the patients with germline BRCA1/2 mutations [14.5 months (95% CI: 7.4-18.2) versus 22.2 months (95% CI: 18.3-NA)]. Conversely, positive PD-L1 expression on immune cells was associated with prolonged median PFS in the patients with wild-type BRCA1/2 [20.9 months (95% CI: 13.9-NA) versus 8.3 months (95% CI: 6.7-13.8)].

    CONCLUSIONS: HRD remained an effective biomarker for enhanced olaparib efficacy in the Asian patients with PSROC. Positive PD-L1 expression was associated with decreased olaparib efficacy in the patients with germline BRCA1/2 mutations but associated with improved olaparib efficacy in the patients with wild-type BRCA1/2.

    TRIAL REGISTRATION: NCT03534453. Registered at May 23, 2018.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links