Displaying all 3 publications

Abstract:
Sort:
  1. Li F, Lv Z, Zhong Z, Mao L, Chua LS, Xu L, et al.
    Foods, 2023 Jan 28;12(3).
    PMID: 36766095 DOI: 10.3390/foods12030567
    Aspergillus niger is one of the major pathogenic fungi causing postharvest grape decay. The development of antifungal agents is beneficial to reduce the loss of grapes during storage. The aim of this study was to investigate the antifungal mechanism of cyclosporin A (CsA). It was indicated that the rot development on grapes caused by A. niger was almost completely inhibited with CsA in vivo at a concentration of 200 mg/L. The transcriptomic analysis revealed that the expression levels of genes involved in rRNA processing and ribosome biogenesis were down-regulated, whereas those related to β-glucosidases and chitinases were up-regulated. The results implied that CsA may disturb rRNA and ribosome formation to obstruct protein synthesis, accelerate chitin and glucan degradation to destruct cell walls, and ultimately reduce postharvest decay caused by A. niger in grapes. This study evaluated the potential of CsA as a grape preservative and provided new insights into the mechanisms underlying the molecular response in A. niger with the treatment of CsA.
  2. Zhang W, Lv Z, Zhang Y, Gopinath SCB, Yuan Y, Huang D, et al.
    Oxid Med Cell Longev, 2022;2022:6006601.
    PMID: 36211824 DOI: 10.1155/2022/6006601
    OBJECTIVE: The off-target effects and severe side effects of PPARα and LXRα agonists greatly limit their application in atherosclerosis (AS). Therefore, this study intended to use mesoporous silica nanoparticles as carriers to generate MnO nanoparticles in situ with T1WI-MRI in mesoporous pores and simultaneously load PPARα and LXRα agonists. Afterward, cRGD-chelated platelet membranes can be used for coating to construct a new nanotheranostic agent.

    METHODS: cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles were synthesized by a chemical method. Dynamic light scattering (DLS) was utilized to detect the size distribution and polydispersity index (PDI) of the nanoparticles. The safety of the nanoparticles was detected by CCK8 in vitro and HE staining and kidney function in vivo. Cell apoptosis was detected by flow cytometry detection and TUNEL staining. Oxidative stress responses (ROS, SOD, MDA, and NOX levels) were tested via a DCFH-DA assay and commercial kits. Immunofluorescence and phagocytosis experiments were used to detect the targeting of nanoparticles. Magnetic resonance imaging (MRI) was used to detect the imaging performance of cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles. Using western blotting, the expression changes in LXRα and ABCA1 were identified.

    RESULTS: cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles were successfully established, with a particle size of approximately 150 nm and PDI less than 0.3, and showed high safety both in vitro and in vivo. cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles showed good targeting properties and better MRI imaging performance in AS. cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles showed better antioxidative capacities, MRI imaging performance, and diagnostic and therapeutic effects on AS by regulating the expression of LXRα and ABCA1.

    CONCLUSION: In the present study, cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles with high safety and the capacity to target vulnerable plaques of AS were successfully established. They showed better performance on MRI images and treatment effects on AS by promoting cholesterol efflux through the regulation of ABCA1. These findings might address the problems of off-target effects and side effects of nanoparticle-mediated drug delivery, which will enhance the efficiency of AS treatment and provide new ideas for the clinical treatment of AS.

  3. Li YY, Liu H, Fu SH, Li XL, Guo XF, Li MH, et al.
    Infect Genet Evol, 2017 11;55:48-55.
    PMID: 28827175 DOI: 10.1016/j.meegid.2017.08.016
    Getah virus (GETV) was first isolated in Malaysia in 1955. Since then, epidemics in horses and pigs caused by GETV have resulted in huge economic losses. At present, GETV has spread across Eurasia and Southeast Asia, including mainland China, Korea, Japan, Mongolia, and Russia. Data show that the Most Recent Common Ancestor (MRCA) of GETV existed about 145years ago (95% HPD: 75-244) and gradually evolved into four distinct evolutionary populations: Groups I-IV. The MRCA of GETVs in Group III, which includes all GETVs isolated from mosquitoes, pigs, horses, and other animals since the 1960s (from latitude 19°N to 60°N), existed about 51years ago (95% HPD: 51-72). Group III is responsible for most viral epidemics among domestic animals. An analysis of the GETV E2 protein sequence and structure revealed seven common amino acid mutation sites. These sites are responsible for the structural and electrostatic differences detected between widespread Group III isolates and the prototype strain MM2021. These differences may account for the recent geographical radiation of the virus. Considering the economic significance of GETV infection in pigs and horses, we recommend the implementation of strict viral screening and monitoring programs.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links