Displaying all 2 publications

Abstract:
Sort:
  1. Madadi R, Mohamadi S, Rastegari M, Karbassi A, Rakib MRJ, Khandaker MU, et al.
    Sci Rep, 2022 Nov 17;12(1):19736.
    PMID: 36396803 DOI: 10.1038/s41598-022-21242-z
    Rapid industrialization and urbanization have resulted in environmental pollution and unsustainable development of cities. The concentration of 12 potentially toxic metal(loid)s in windowsill dust samples (n = 50) were investigated from different functional areas of Qom city with the highest level of urbanization in Iran. Spatial analyses (ArcGIS 10.3) and multivariate statistics including Principal Component Analysis and Spearman correlation (using STATISTICA-V.12) were adopted to scrutinize the possible sources of pollution. The windowsill dust was very highly enriched with Sb (50 mg/kg) and Pb (1686 mg/kg). Modified degree of contamination (mCd) and the pollution load indices (PLIzone) indicate that windowsill dust in all functional areas was polluted in the order of industrial > commercial > residential > green space. Arsenic, Cd, Mo, Pb, Sb, Cu, and Zn were sourced from a mixture of traffic and industrial activities, while Mn in the dust mainly stemmed from mining activities. Non-carcinogenic health risk (HI) showed chronic exposure of Pb for children in the industrial zone (HI = 1.73). The estimations suggest the possible carcinogenic risk of As, Pb, and Cr in the dust. The findings of this study reveal poor environmental management of the city. Emergency plans should be developed to minimize the health risks of dust to residents.
  2. Rakib MRJ, Al Nahian S, Madadi R, Haider SMB, De-la-Torre GE, Walker TR, et al.
    Environ Sci Process Impacts, 2023 May 25;25(5):929-940.
    PMID: 36939043 DOI: 10.1039/d3em00014a
    Microplastic (MP) pollution is a major global issue that poses serious threats to aquatic organisms. Although research on MP pollution has been extensive, the relationship between MPs and water quality parameters in estuarine water systems is unclear. This work studied the spatiotemporal distribution and characteristics of MPs in the Karnaphuli River estuary, Bangladesh. MP abundance was calculated by towing with a plankton net (300 μm mesh size) at three river gradients (up-, mid- and downstream) and the association between physicochemical parameters of water (temperature, pH, salinity, electrical conductivity, total dissolved solids, and dissolved oxygen) and MP distribution patterns was also investigated. Mean MP abundance in water was higher during the wet season (April) (4.33 ± 2.45 items per m3) compared to the dry season (September) (3.65 ± 2.54 items per m3). In descending order, the highest MP abundance was observed downstream (6.60 items per m3) > midstream (3.15 items per m3) > upstream (2.22 items per m3). pH during the wet season (April) and temperature during the dry season (September) were key physicochemical parameters that correlated with river MP abundance (r = -0.74 and 0.74 respectively). Indicating that if the Karnaphuli River water has low pH or high temperature, there is likely to be high MPs present in the water. Most MP particles were film-shaped, white in color, and 1-5 mm in size. Of the six polymers detected, polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), and cellulose were predominant, comprising roughly 17-19% each. These results can be used to model MP transport in the freshwater ecosystem of the Karnaphuli River estuary in Bangladesh to help develop future mitigation strategies.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links