A real-time Bangla Sign Language interpreter can enable more than 200 k hearing and speech-impaired people to the mainstream workforce in Bangladesh. Bangla Sign Language (BdSL) recognition and detection is a challenging topic in computer vision and deep learning research because sign language recognition accuracy may vary on the skin tone, hand orientation, and background. This research has used deep machine learning models for accurate and reliable BdSL Alphabets and Numerals using two well-suited and robust datasets. The dataset prepared in this study comprises of the largest image database for BdSL Alphabets and Numerals in order to reduce inter-class similarity while dealing with diverse image data, which comprises various backgrounds and skin tones. The papers compared classification with and without background images to determine the best working model for BdSL Alphabets and Numerals interpretation. The CNN model trained with the images that had a background was found to be more effective than without background. The hand detection portion in the segmentation approach must be more accurate in the hand detection process to boost the overall accuracy in the sign recognition. It was found that ResNet18 performed best with 99.99% accuracy, precision, F1 score, sensitivity, and 100% specificity, which outperforms the works in the literature for BdSL Alphabets and Numerals recognition. This dataset is made publicly available for researchers to support and encourage further research on Bangla Sign Language Interpretation so that the hearing and speech-impaired individuals can benefit from this research.
Hypertension is a potentially unsafe health ailment, which can be indicated directly from the blood pressure (BP). Hypertension always leads to other health complications. Continuous monitoring of BP is very important; however, cuff-based BP measurements are discrete and uncomfortable to the user. To address this need, a cuff-less, continuous, and noninvasive BP measurement system is proposed using the photoplethysmograph (PPG) signal and demographic features using machine learning (ML) algorithms. PPG signals were acquired from 219 subjects, which undergo preprocessing and feature extraction steps. Time, frequency, and time-frequency domain features were extracted from the PPG and their derivative signals. Feature selection techniques were used to reduce the computational complexity and to decrease the chance of over-fitting the ML algorithms. The features were then used to train and evaluate ML algorithms. The best regression models were selected for systolic BP (SBP) and diastolic BP (DBP) estimation individually. Gaussian process regression (GPR) along with the ReliefF feature selection algorithm outperforms other algorithms in estimating SBP and DBP with a root mean square error (RMSE) of 6.74 and 3.59, respectively. This ML model can be implemented in hardware systems to continuously monitor BP and avoid any critical health conditions due to sudden changes.