In this paper, a low-cost resin-coated commercial-photo-paper substrate is used to design a printed reconfigurable multiband antenna. The two PIN diodes are used mainly to redistribute the surface current that provides reconfigurable properties to the proposed antenna. The antenna size of 40 mm × 40 mm × 0.44 mm with a partial ground, covers wireless and mobile bands ranging from 1.91 GHz to 6.75 GHz. The parametric analysis is performed to achieve optimized design parameters of the antenna. The U-shaped and C-shaped emitters are meant to function at 2.4 GHz and 5.9 GHz, respectively, while the primary emitter is designed to operate at 3.5 GHz. The proposed antenna achieved peak gain and radiation efficiency of 3.4 dBi and 90%, respectively. Simulated and measured results of the reflection coefficient, radiation pattern, gain, and efficiency show that the antenna design is in favorable agreement. Since the proposed antenna achieved wideband (1.91-6.75 GHz) using PIN diode configuration, using this technique the need for numerous electronic components to provide multiband frequency is avoided.
This article presents a quad-element MIMO antenna designed for multiband operation. The prototype of the design is fabricated and utilizes a vector network analyzer (VNA-AV3672D) to measure the S-parameters. The proposed antenna is capable of operating across three broad frequency bands: 3-15.5 GHz, encompassing the C band (4-8 GHz), X band (8-12.4 GHz), and a significant portion of the Ku band (12.4-15.5 GHz). Additionally, it covers two mm-wave bands, specifically 26.4-34.3 GHz and 36.1-48.9 GHz, which corresponds to 86% of the Ka-band (27-40 GHz). To enhance its performance, the design incorporates a partial ground plane and a top patch featuring a dual-sided reverse 3-stage stair and a straight stick symmetrically placed at the bottom. The introduction of a defected ground structure (DGS) on the ground plane serves to provide a wideband response. The DGS on the ground plane plays a crucial role in improving the electromagnetic interaction between the grounding surface and the top patch, contributing to the wideband characteristics of the antenna. The dimensions of the proposed MIMO antenna are 31.7 mm × 31.7 mm × 1.6 mm. Furthermore, the article delves into the assessment of various performance metrics related to antenna diversity, such as ECC, DG, TARC, MEG, CCL, and channel capacity, with corresponding values of 0.11, 8.87 dB, -6.6 dB, ±3 dB, 0.32 bits/sec/Hz, and 18.44 bits/sec/Hz, respectively. Additionally, the equivalent circuit analysis of the MIMO system is explored in the article. It's worth noting that the measured results exhibit a strong level of agreement with the simulated results, indicating the reliability of the proposed design. The MIMO antenna's ability to exhibit multiband response, good diversity performance, and consistent channel capacity across various frequency bands renders it highly suitable for integration into multi-band wireless devices. The developed MIMO system should be applicable on n77/n78/n79 5G NR (3.3-5 GHz); WLAN (4.9-5.725 GHz); Wi-Fi (5.15-5.85 GHz); LTE5537.5 (5.15-5.925 GHz); WiMAX (5.25-5.85 GHz); WLAN (5.725-5.875 GHz); long-distance radio telecommunication (4-8 GHz; C-band); satellite, radar, space communications and terrestrial broadband (8-12 GHz; X-band); and various satellite communications (27-40 GHz; Ka-band).