Displaying all 2 publications

Abstract:
Sort:
  1. De AK, Sawhney S, Ponraj P, Muthiyan R, Muniswamy K, Ravi SK, et al.
    Anim Biotechnol, 2023 Apr;34(2):156-165.
    PMID: 34310265 DOI: 10.1080/10495398.2021.1950742
    Nicobari pig is reared by Nicobarese, a native tribal population of Andaman and Nicobar Islands. Nicobari pig has maintained its genetic identity due to geographical isolation. This communication is the first report on maternal inheritance of Nicobari pigs. DNA polymorphism data showed seven haplotypes. D-loop sequence information and mitogenome analysis were able to earmark Nicobari pigs to Asian clade. The domestication process of pigs and its expansion pattern help to understand human migration pattern. Based on this hypothesis, this communication elucidates the probable origin of Nicobarese. Earlier studies indicated that Nicobarese had genetic affinities to races distributed in China, Malaysia and Thailand. Our data on maternal inheritance of Nicobari pig correlates with the data on migration of Nicobarese. Moreover, we could establish a novel connection of Nicobarese with people of Northeastern parts of India, Philippines and Vietnam through phylogenetic signal and geographical provenance of Nicobari pig. We further concluded that migration of Nicobarese happened during Western route of migration (WRM) ∼4000 years before present. Therefore, we propose one wave hypothesis of peopling of Nicobar based on our study and existence of Ausrtroasiatic language, Mon-Khmer in these islands.
  2. Choudhary M, Kumar S, Onte S, Meena VK, Malakar D, Garg K, et al.
    Heliyon, 2024 Sep 15;10(17):e36208.
    PMID: 39263071 DOI: 10.1016/j.heliyon.2024.e36208
    Potassium, a pivotal macronutrient essential for growth, development, and crop yield, serves as a critical determinant of soil productivity. Its depletion disrupts the equilibrium of soil nutrients, prompting an investigation into integrated potassium management strategies to address this challenge. A field experiment was conducted during the winter season of 2020 using a randomized complete block design, with eight treatments, each replicated three times in Chinese cabbage (Brassica rapa L. subsp. chinensis). These treatments comprised standard (100 %) and reduced (75 % and 50 %) rates of the recommended dose of potassium (RDK) via muriate of potash (MOP). Variations in the inclusion and exclusion of plant growth-promoting rhizobacteria (PGPR), farmyard manure (FYM) as 25 % of the potassium recommendation, and foliar spray of nano potash were systematically implemented. Findings unequivocally demonstrated that the treatmentT8, involving 100 % RDK +25 % K through FYM + PGPR + nano K fertilizer spray at 25 and 40 DAS, yielded significant improvements in both green fodder (64.0 t ha-1) and dry fodder (7.87 t ha-1).Moreover, T8 exhibited the highest values for total ash (8.75 %), total ash yield (68.9 ± 2.88 kg ha-1), ether extract (2.85 %), ether extract yield (22.4 ± 0.88 kg ha-1), crude protein (9.71 %), and total crude protein yield (76.4 ± 3.21 kg ha-1). Conversely, a marked reduction was observed in various fiber components and carbohydrate fractions upon application of the T8 treatment. The lowest values of yield, crude protein content, total ash ether extract were recorded in treatment T1 (control) applied with no potassium. This investigation underscores the inadequacy of the recommended potassium dose in achieving optimal productivity, necessitating a re-evaluation of potassium fertilization levels. The integrated approach involving FYM, PGPR, and nano potash, coupled with the recommended potassium dose through MOP, emerges as a promising avenue for augmenting both yield and quality parameters in Chinese cabbage.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links