Circular RNAs (circRNAs) constitute a large class of RNA species formed by the back-splicing of co-linear exons, often within protein-coding transcripts. Despite much progress in the field, it remains elusive whether the majority of circRNAs are merely aberrant splicing by-products with unknown functions, or their production is spatially and temporally regulated to carry out specific biological functions. To date, the majority of circRNAs have been cataloged in resting cells. Here, we identify an LPS-inducible circRNA: mcircRasGEF1B, which is predominantly localized in cytoplasm, shows cell-type specific expression, and has a human homolog with similar properties, hcircRasGEF1B. We show that knockdown of the expression of mcircRasGEF1B reduces LPS-induced ICAM-1 expression. Additionally, we demonstrate that mcircRasGEF1B regulates the stability of mature ICAM-1 mRNAs. These findings expand the inventory of functionally characterized circRNAs with a novel RNA species that may play a critical role in fine-tuning immune responses and protecting cells against microbial infection.
Circular RNAs (circRNAs) have recently emerged as a large class of novel non-coding RNA species. However, the detailed functional significance of the vast majority of them remains to be elucidated. Most functional characterization studies targeting circRNAs have been limited to resting cells, leaving their role in dynamic cellular responses to stimuli largely unexplored. In this study, we focus on the LPS-induced cytoplasmic circRNA, mcircRasGEF1B, and combine targeted mcircRasGEF1B depletion with high-throughput transcriptomic analysis to gain insight into its function during the cellular response to LPS stimulation. We show that knockdown of mcircRasGEF1B results in altered expression of a wide array of genes. Pathway analysis revealed an overall enrichment of genes involved in cell cycle progression, mitotic division, active metabolism, and of particular interest, NF-κB, LPS signaling pathways, and macrophage activation. These findings expand the set of functionally characterized circRNAs and support the regulatory role of mcircRasGEF1B in immune response during macrophage activation and protection against microbial infections.
Epstein-Barr virus (EBV) has been recently found to generate novel circular RNAs (circRNAs) through backsplicing. However, comprehensive catalogs of EBV circRNAs in other cell lines and their functional characterization are still lacking. In this study, we have identified a list of putative EBV circRNAs in GM12878, an EBV-transformed lymphoblastoid cell line, with a significant majority encoded from the EBV latent genes. A novel EBV circRNA derived from the exon 5 of LMP-2 gene which exhibited highest prevalence, was further validated using RNase R assay and Sanger sequencing. This circRNA, which we term circLMP-2_e5, can be universally detected in a panel of EBV-positive cell lines modelling different latency programs. It ranges from lower expression in nasopharyngeal carcinoma (NPC) cells to higher expression in B cells, and is localized to both the cytoplasm and the nucleus. We provide evidence that circLMP-2_e5 is expressed concomitantly with its cognate linear LMP-2 RNA upon EBV lytic reactivation, and may be produced as a result of exon skipping, with its circularization possibly occurring without the involvement of cis elements in the short flanking introns. Furthermore, we show that circLMP-2_e5 is not involved in regulating cell proliferation, host innate immune response, its linear parental transcripts, or EBV lytic reactivation. Taken together, our study expands the current repertoire of putative EBV circRNAs, broadens our understanding of the biology of EBV circRNAs, and lays the foundation for further investigation of their function in the EBV life cycle and disease development.