Displaying all 2 publications

Abstract:
Sort:
  1. Bilal M, Gani A, Lali MIU, Marjani M, Malik N
    Cyberpsychol Behav Soc Netw, 2019 Jul;22(7):433-450.
    PMID: 31074639 DOI: 10.1089/cyber.2018.0670
    Social media has taken an important place in the routine life of people. Every single second, users from all over the world are sharing interests, emotions, and other useful information that leads to the generation of huge volumes of user-generated data. Profiling users by extracting attribute information from social media data has been gaining importance with the increasing user-generated content over social media platforms. Meeting the user's satisfaction level for information collection is becoming more challenging and difficult. This is because of too much noise generated, which affects the process of information collection due to explosively increasing online data. Social profiling is an emerging approach to overcome the challenges faced in meeting user's demands by introducing the concept of personalized search while keeping in consideration user profiles generated using social network data. This study reviews and classifies research inferring users social profile attributes from social media data as individual and group profiling. The existing techniques along with utilized data sources, the limitations, and challenges are highlighted. The prominent approaches adopted include Machine Learning, Ontology, and Fuzzy logic. Social media data from Twitter and Facebook have been used by most of the studies to infer the social attributes of users. The studies show that user social attributes, including age, gender, home location, wellness, emotion, opinion, relation, influence, and so on, still need to be explored. This review gives researchers insights of the current state of literature and challenges for inferring user profile attributes using social media data.
  2. Usmani RSA, Pillai TR, Hashem IAT, Marjani M, Shaharudin R, Latif MT
    Environ Sci Pollut Res Int, 2021 Oct;28(40):56759-56771.
    PMID: 34075501 DOI: 10.1007/s11356-021-14305-7
    Air pollution has a serious and adverse effect on human health, and it has become a risk to human welfare and health throughout the globe. One of the major effects of air pollution on health is hospitalizations associated with air pollution. Recently, the estimation and prediction of air pollution-based hospitalization is carried out using artificial intelligence (AI) and machine learning (ML) techniques, i.e., deep learning and long short-term memory (LSTM). However, there is ample room for improvement in the available applied methodologies to estimate and predict air pollution-based hospital admissions. In this paper, we present the modeling and analysis of air pollution and cardiorespiratory hospitalization. This study aims to investigate the association between cardiorespiratory hospitalization and air pollution, and predict cardiorespiratory hospitalization based on air pollution using the artificial intelligence (AI) techniques. We propose the enhanced long short-term memory (ELSTM) model and provide a comparison with other AI techniques, i.e., LSTM, DL, and vector autoregressive (VAR). This study was conducted at seven study locations in Klang Valley, Malaysia. The utilized dataset contains the data from January 2006 to December 2016 for five study locations, i.e., Klang (KLN), Shah Alam (SA), Putrajaya (PUJ), Petaling Jaya (PJ), and Cheras, Kuala Lumpur (CKL). The dataset for Banting contains data from April 2010 to December 2016, and the data for Batu Muda, Kuala Lumpur, contains data from January 2009 to December 2016. The prediction results show that the ELSTM model performed significantly better than other models in all study locations, with the best RMSE scores in Klang study location (ELSTM: 0.002, LSTM: 0.013, DL: 0.006, VAR: 0.066). The results also indicated that the proposed ELSTM model was able to detect and predict the trends of monthly hospitalization significantly better than the LSTM and other models in the study. Hence, we can conclude that we can utilize AI techniques to accurately predict cardiorespiratory hospitalization based on air pollution in Klang Valley, Malaysia.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links