Displaying all 2 publications

Abstract:
Sort:
  1. DeBuysscher BL, Scott D, Marzi A, Prescott J, Feldmann H
    Vaccine, 2014 May 07;32(22):2637-44.
    PMID: 24631094 DOI: 10.1016/j.vaccine.2014.02.087
    BACKGROUND: Nipah virus (NiV), a zoonotic pathogen causing severe respiratory illness and encephalitis in humans, emerged in Malaysia in 1998 with subsequent outbreaks on an almost annual basis since 2001 in parts of the Indian subcontinent. The high case fatality rate, human-to-human transmission, wide-ranging reservoir distribution and lack of licensed intervention options are making NiV a serious regional and potential global public health problem. The objective of this study was to develop a fast-acting, single-dose NiV vaccine that could be implemented in a ring vaccination approach during outbreaks.

    METHODS: In this study we have designed new live-attenuated vaccine vectors based on recombinant vesicular stomatitis viruses (rVSV) expressing NiV glycoproteins (G or F) or nucleoprotein (N) and evaluated their protective efficacy in Syrian hamsters, an established NiV animal disease model. We further characterized the humoral immune response to vaccination in hamsters using ELISA and neutralization assays and performed serum transfer studies.

    RESULTS: Vaccination of Syrian hamsters with a single dose of the rVSV vaccine vectors resulted in strong humoral immune responses with neutralizing activities found only in those animals vaccinated with rVSV expressing NiV G or F proteins. Vaccinated animals with neutralizing antibody responses were completely protected from lethal NiV disease, whereas animals vaccinated with rVSV expressing NiV N showed only partial protection. Protection of NiV G or F vaccinated animals was conferred by antibodies, most likely the neutralizing fraction, as demonstrated by serum transfer studies. Protection of N-vaccinated hamsters was not antibody-dependent indicating a role of adaptive cellular responses for protection.

    CONCLUSIONS: The rVSV vectors expressing Nipah virus G or F are prime candidates for new 'emergency vaccines' to be utilized for NiV outbreak management.

  2. de Wit E, Feldmann F, Cronin J, Goldin K, Mercado-Hernandez R, Williamson BN, et al.
    EBioMedicine, 2023 Jan;87:104405.
    PMID: 36508878 DOI: 10.1016/j.ebiom.2022.104405
    BACKGROUND: Nipah virus (NiV) causes recurrent outbreaks of lethal respiratory and neurological disease in Southeast Asia. The World Health Organization considers the development of an effective vaccine against NiV a priority.

    METHODS: We produced two NiV vaccine candidates using the licensed VSV-EBOV vaccine as a backbone and tested its efficacy against lethal homologous and heterologous NiV challenge with Nipah virus Bangladesh and Nipah virus Malaysia, respectively, in the African green monkey model.

    FINDINGS: The VSV-EBOV vaccine expressing NiV glycoprotein G (VSV-NiVG) induced high neutralising antibody titers and afforded complete protection from homologous and heterologous challenge. The VSV-EBOV vaccine expressing NiV fusion protein F (VSV-NiVF) induced a lower humoral response and afforded complete homologous protection, but only partial heterologous protection. Both vaccines reduced virus shedding from the upper respiratory tract, and virus replication in the lungs and central nervous system. None of the protected animals vaccinated with VSV-NiVG or VSV-NiVF showed histological lesions in the CNS, but one VSV-NiVF-vaccinated animal that was not protected developed severe meningoencephalitis.

    INTERPRETATION: The VSV-NiVG vaccine offers broad protection against NiV disease.

    FUNDING: This study was supported by the Intramural Research Program, NIAID, NIH.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links