Extract of mengkudu was heated using a bench-top tube heat exchanger at 30, 50, 70 and 90 o C for 0, 5, 10 and 15 min residence time. The treated mengkudu extract was then measured for pH, L * , a * , b * color parameters, clarity, viscosity and total polyphenol content. Results show that heating using temperature of 30 to 90 o C for 5 to 15 mins significantly (p
A study was carried out to determine the effect of enzyme concentration, temperature and incubation time of bromelain on nitrogen content (NC) and degree of hydrolysis (DH) of hydrolysate from cockle (Anadara granosa) meat wash water. Protein precipitation of cockle meat wash water was conducted at pH 4. The precipitate was then hydrolyzed using bromelain at concentrations of 0.5, 1.5 and 2.5% (enzyme/substrate). The best enzyme concentration was subsequently used to study the effect of incubation temperature at 30, 45 and 60°C. The best temperature was then used to determine the effect of incubation time at 0, 24 and 48 hours. Increasing bromelain concentration from 0 to 2.5% produced an increase in NC and DH. Similarly, increasing the incubation time from 0 to 48 hours also increased the value of NC and DH. However, while the increasing of incubation temperature from 30 to 60°C produced an increase in NC, no significant difference was observed for DH.
Sensory attributes of four different palm sugars were related to gas chromatography/mass spectrometry (GC/MS) analysis using partial least squares regression (PLS). The sweet caramel and burnt-like sensory attributes were strongly associated with 2-furfural and 2-furan methanol volatile compounds. The sensory scores for roasty and nutty were also associated with the GC/MS ratings for roasty and nutty-like aroma by its highest scores obtained from 2-ethyl-5-methyl pyrazine, 2,5-dimethyl pyrazine and 2,3-dimethyl pyrazine volatile compounds along the PC1 dimension. PLS analysis did not show correlation for the character impact compound furaneol, 2-ethyl-3,5-dimethyl pyrazine (EDMP) and 2,3-diethyl-5-methyl pyrazine (DEMP), which are perceived to be responsible for the sweet caramel-like and roasty/nutty attributes of palm sugars, respectively. This lack of relationship could partially be explained by covariance among the sensory ratings for the samples.
Rambutan (Nephelium lappaceum) peel is a potential source of antioxidant. As rambutan is a seasonal fruit, a proper heat treatment prior to storage is necessary. Thus, this study was conducted to determine the effect of water and steam blanchings on browning enzymes and antioxidant activities of rambutan peel extracts. Rambutan from the variety of ‘Anak Sekolah’ were peeled and the peel was blanched in boiling water for 0, 2.5, 5 min and by autoclaving for 0, 5, 10 and 15 min. The residual peroxidase (POD) and polyphenoloxidase (PPO) activities, antioxidant activity (2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity), total polyphenol content (TPC) and peel extract colour were determined. The results showed that both water and steam blanchings significantly reduced (p < 0.05) POD and PPO activities. The results also indicated that the increase in the blanching period did not significantly reduce the enzyme activities further. In terms of antioxidant activity, the thermal pretreatment caused no significant difference in the contents of phenolic compounds, as well as the antioxidant capacity of the final product.
A study was carried out to observe the fermentation process for noni (Morinda citrifolia L.) extract by Saccharomyces cerevisiae. The experiment was based on a central composite rotatable design (CCRD) employing 5 center points with augmented axial and factorial points resulting in 30 runs. The M. citrifolia extract was fermented with different combination of substrate concentration (40, 50, 60, 70 and 80%) (w/v), inoculum size (0, 1.5, 3, 4.5 and 6%) (v/v), temperature (30, 33.5, 37, 40.5 and 44oC) and fermentation time (0, 1.5, 3, 4.5 and 6 days). Five physico-chemical characteristics which include pH, titratable acidity, turbidity, total soluble solids and total polyphenol content were measured. Results showed that all the responses could be well represented using statistical models. For pH, only fermentation time was found to be not significant, while for titratable acidity and total polyphenol content, the effects of substrate concentration and fermentation time were significant. The effects of inoculum size and temperature level were found to be significant for turbidity. For total soluble solids, only the effect of substrate concentration and inoculum size were found to be significant.
This research was carried out to determine the effect of resin weight and extract flow rate
during deacidification on the oxalic acid content, physicochemical and antioxidative properties
of starfruit extract. Nine treatments which consisted of different combinations of resin weight
(3, 5 and 8 g) and flow rate (6, 9, and 12 ml/min) were carried out. Parameters measured
were oxalic acid content, pH, total polyphenol content, vitamin C and free radical scavenging
activity (DPPH). Increasing the weight of resin and decreasing the flow rate increased the pH
of starfruit juice. The pH of starfruit juice increased from 3.6 for control to 9.9 for sample
deacidified with 8 g of resin at flow rate of 6 ml/min. Oxalic acid content of starfruit juice
showed a significant (p
A study was carried out to optimize the deacidification process for noni (Morinda citrifolia L.) extract using packed column of calcium carbonate. The experiments were based on a 3-level factorial design to study the optimum process of deacidification for M. citrifolia extract. The M. citrifolia extract was treated with CaCO3 packed in different column diameter (20, 25 and 30 mm), height of calcium carbonate (0, 0.5 and 1 cm) and feed rate (10, 30 and 50 ml/min). Physico-chemical characteristics which include pH, titratable acidity, turbidity, total polyphenol content and total soluble solids were measured. Results showed that only pH, titratable acidity and turbidity could be well represented using statistical models. For pH, only the effect of height of CaCO3 was found to be significant. While for titratable acidity and turbidity, effects of diameter column and height of CaCO3 were significant. The optimum conditions for the deacidification of M. citrifolia extract was by using a column diameter of 30 mm, CaCO3 height of 1 cm, and a feed rate of 50 ml/min.