Displaying all 4 publications

Abstract:
Sort:
  1. Kzar AA, Mat Jafri MZ, Mutter KN, Syahreza S
    PMID: 26729148 DOI: 10.3390/ijerph13010092
    Decreasing water pollution is a big problem in coastal waters. Coastal health of ecosystems can be affected by high concentrations of suspended sediment. In this work, a Modified Hopfield Neural Network Algorithm (MHNNA) was used with remote sensing imagery to classify the total suspended solids (TSS) concentrations in the waters of coastal Langkawi Island, Malaysia. The adopted remote sensing image is the Advanced Land Observation Satellite (ALOS) image acquired on 18 January 2010. Our modification allows the Hopfield neural network to convert and classify color satellite images. The samples were collected from the study area simultaneously with the acquiring of satellite imagery. The sample locations were determined using a handheld global positioning system (GPS). The TSS concentration measurements were conducted in a lab and used for validation (real data), classification, and accuracy assessments. Mapping was achieved by using the MHNNA to classify the concentrations according to their reflectance values in band 1, band 2, and band 3. The TSS map was color-coded for visual interpretation. The efficiency of the proposed algorithm was investigated by dividing the validation data into two groups. The first group was used as source samples for supervisor classification via the MHNNA. The second group was used to test the MHNNA efficiency. After mapping, the locations of the second group in the produced classes were detected. Next, the correlation coefficient (R) and root mean square error (RMSE) were calculated between the two groups, according to their corresponding locations in the classes. The MHNNA exhibited a higher R (0.977) and lower RMSE (2.887). In addition, we test the MHNNA with noise, where it proves its accuracy with noisy images over a range of noise levels. All results have been compared with a minimum distance classifier (Min-Dis). Therefore, TSS mapping of polluted water in the coastal Langkawi Island, Malaysia can be performed using the adopted MHNNA with remote sensing techniques (as based on ALOS images).
  2. Tan KC, Lim HS, Mat Jafri MZ
    Environ Sci Pollut Res Int, 2014 Jun;21(12):7567-77.
    PMID: 24599658 DOI: 10.1007/s11356-014-2697-y
    This study aimed to predict monthly columnar ozone (O3) in Peninsular Malaysia by using data on the concentration of environmental pollutants. Data (2003-2008) on five atmospheric pollutant gases (CO2, O3, CH4, NO2, and H2O vapor) retrieved from the satellite Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) were employed to develop a model that predicts columnar ozone through multiple linear regression. In the entire period, the pollutants were highly correlated (R = 0.811 for the southwest monsoon, R = 0.803 for the northeast monsoon) with predicted columnar ozone. The results of the validation of columnar ozone with column ozone from SCIAMACHY showed a high correlation coefficient (R = 0.752-0.802), indicating the model's accuracy and efficiency. Statistical analysis was utilized to determine the effects of each atmospheric pollutant on columnar ozone. A model that can retrieve columnar ozone in Peninsular Malaysia was developed to provide air quality information. These results are encouraging and accurate and can be used in early warning of the population to comply with air quality standards.
  3. Rabba JA, Suhaimi FM, Mat Jafri MZ, Jaafar HA, Osman ND
    Radiography (Lond), 2023 May;29(3):533-538.
    PMID: 36913788 DOI: 10.1016/j.radi.2023.02.028
    INTRODUCTION: The daily image quality assessment involves large datasets that consume a lot of time and effort. This study aims to evaluate a proposed automated calculator for image distortion analysis in 2-dimensional (2D) panoramic imaging mode for a dental cone beam computed tomography (CBCT) system in comparison with present manual calculations.

    METHODS: A ball phantom was scanned using panoramic mode of the Planmeca ProMax 3D Mid CBCT unit (Planmeca, Helsinki, Finland) with standard exposure settings used in clinical practice (60 kV, 2 mA, and maximum FOV). An automated calculator algorithm was developed in MATLAB platform. Two parameters associated with panoramic image distortion such as balls diameter and distance between middle and tenth balls were measured. These automated measurements were compared with manual measurement using the Planmeca Romexis and ImageJ software.

    RESULTS: The findings showed smaller deviation in distance difference measurements by proposed automated calculator (ranged 3.83 mm) as compared to manual measurements (ranged 5.00 for Romexis and 5.12 mm for ImageJ software). There was a significant difference (p 

  4. Samson DO, Aziz MZA, Shukri A, Mat Jafri MZ, Hashim R, Zuber SH, et al.
    Health Phys, 2023 Aug 01;125(2):77-91.
    PMID: 36826380 DOI: 10.1097/HP.0000000000001688
    The current study was undertaken to investigate the radiological and dosimetric parameters of natural product-based composite (SPI/NaOH/IA-PAE/ Rhizophora spp .) phantoms. The radiological properties of the phantoms were measured at different gamma energies from Compton scatter of photons through angles of 0, 30, 45, 60, 75, and 90 degrees. Ionization chamber (IC) and Gafchromic EBT3 film dosimeters were employed to evaluate the dosimetric characteristics for photons (6-10 MV) and electrons (6-15 MeV). Radiological property results of the composite phantoms were consistent with good quality compared to those of solid water phantoms and theoretical values of water. Photon beam quality index of the SPI15 phantom with p-values of 0.071 and 0.073 exhibited insignificant changes. In addition, good agreement was found between PDD curves measured with IC and Gafchromic EBT3 film for both photons and electrons. The computed therapeutic and half-value depth ranges matched within the limits and are similar to those of water and solid water phantoms. Therefore, the radiological and dosimetric parameters of the studied composite phantom permit its use in the selection of convenient tissue- and water-equivalent phantom material for medical applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links