Displaying all 2 publications

Abstract:
Sort:
  1. Mathai A, Guo N, Liu D, Wang X
    Sensors (Basel), 2020 Jul 29;20(15).
    PMID: 32751165 DOI: 10.3390/s20154211
    Transparent object detection and reconstruction are significant, due to their practical applications. The appearance and characteristics of light in these objects make reconstruction methods tailored for Lambertian surfaces fail disgracefully. In this paper, we introduce a fixed multi-viewpoint approach to ascertain the shape of transparent objects, thereby avoiding the rotation or movement of the object during imaging. In addition, a simple and cost-effective experimental setup is presented, which employs two single-pixel detectors and a digital micromirror device, for imaging transparent objects by projecting binary patterns. In the system setup, a dark framework is implemented around the object, to create shades at the boundaries of the object. By triangulating the light path from the object, the surface shape is recovered, neither considering the reflections nor the number of refractions. It can, therefore, handle transparent objects with a relatively complex shape with the unknown refractive index. The implementation of compressive sensing in this technique further simplifies the acquisition process, by reducing the number of measurements. The experimental results show that 2D images obtained from the single-pixel detectors are better in quality with a resolution of 32×32. Additionally, the obtained disparity and error map indicate the feasibility and accuracy of the proposed method. This work provides a new insight into 3D transparent object detection and reconstruction, based on single-pixel imaging at an affordable cost, with the implementation of a few numbers of detectors.
  2. Li M, Mathai A, Lau SLH, Yam JW, Xu X, Wang X
    Sensors (Basel), 2021 Jan 05;21(1).
    PMID: 33466530 DOI: 10.3390/s21010313
    Due to medium scattering, absorption, and complex light interactions, capturing objects from the underwater environment has always been a difficult task. Single-pixel imaging (SPI) is an efficient imaging approach that can obtain spatial object information under low-light conditions. In this paper, we propose a single-pixel object inspection system for the underwater environment based on compressive sensing super-resolution convolutional neural network (CS-SRCNN). With the CS-SRCNN algorithm, image reconstruction can be achieved with 30% of the total pixels in the image. We also investigate the impact of compression ratios on underwater object SPI reconstruction performance. In addition, we analyzed the effect of peak signal to noise ratio (PSNR) and structural similarity index (SSIM) to determine the image quality of the reconstructed image. Our work is compared to the SPI system and SRCNN method to demonstrate its efficiency in capturing object results from an underwater environment. The PSNR and SSIM of the proposed method have increased to 35.44% and 73.07%, respectively. This work provides new insight into SPI applications and creates a better alternative for underwater optical object imaging to achieve good quality.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links