This study aims to develop a highly efficient adsorbent material. CNTs are prepared using a chemical vapor deposition method with acetylene and synthesized mesoporous Ni-MCM41 as the carbon source and catalyst, respectively, and are then functionalized using 3-aminopropyltriethoxysilane (APTES) through the co-condensation method and loaded with commercial TiO2. Results of X-ray powder diffraction (XRD), Raman spectra, and Fourier transform infrared spectroscopy (FTIR) confirm that the synthesized CNTs grown are multi-walled carbon nanotubes (MWNTs). Transmission electron microscopy shows good dispersion of TiO2 nanoparticles onto functionalized-CNTs loaded TiO2, with the diameter of a hair-like structure measuring between 3 and 8 nm. The functionalized-CNTs loaded TiO2 are tested as an adsorbent for removal of methyl orange (MO) in aqueous solution, and results show that 94% of MO is removed after 10 min of reaction, and 100% after 30 min. The adsorption kinetic model of functionalized-CNTs loaded TiO2 follows a pseudo-second order with a maximum adsorption capacity of 42.85 mg/g. This study shows that functionalized-CNTs loaded TiO2 has considerable potential as an adsorbent material due to the short adsorption time required to achieve equilibrium.
Chitosan ionic liquid beads were prepared from chitosan and 1-butyl-3-methylimidazolium based ionic liquids to remove Malachite Green (MG) from aqueous solutions. Batch adsorption experiments were carried out as a function of initial pH, adsorbent dosage, agitation time and initial MG concentration. The optimum conditions were obtained at pH 4.0, 0.008g of adsorbent dosage and 20min of agitation time were utilized in the kinetic and isotherm studies. Three kinetic models were applied to analyze the kinetic data and pseudo-second order was found to be the best fitted model with R2>0.999. In order to determine the adsorption capacity, the sorption data were analyzed using the linear form of Langmuir, Freundlich and Temkin equations. The isotherm was best fitted by Langmuir isotherm model. The maximum adsorption capacity (qmax) obtained from Langmuir isotherm for two chitosan beads 1-butyl-3-methylimidazolium acetate A and 1-butyl-3-methylimidazolium B are 8.07mgg-1 and 0.24mgg-1 respectively.
In this study, a unique magnetic molecularly imprinted polymer (MMIP) adsorbent towards bisphenol A (BPA) as a template molecule was developed by bulk polymerization using β-cyclodextrin (β-CD) as a co-monomer with methacrylic acid (MAA) to form MMIP MAA-βCD as a new adsorbent. β-CD was hybridized with MAA to obtain water-compactible imprinting sites for the effective removal of BPA from aqueous samples. Benzoyl peroxide and trimethylolpropane trimethacrylate were used as the initiator and cross-linker, respectively. The adsorbents were characterized by Fourier transform infrared spectroscopy, scanning electronic microscopy, transmission electron microscopy, vibrating sample magnetometer, Brunauer-Emmett-Teller and X-ray diffraction. 1H nuclear magnetic resonance spectroscopy was used to characterize the MAA-βCD and BPA-MAA-βCD complex. Several parameters influencing the adsorption efficiency of BPA such as adsorbent dosage, pH of sample solution, contact time, initial concentrations and temperature as well as selectivity and reusability study have been evaluated. MMIP MAA-βCD showed significantly higher removal efficiency and selective binding capacity towards BPA compared to MMIP MAA owing to its unique morphology with the presence of β-CD. The kinetics data can be well described by the pseudo second-order kinetic and Freundlich isotherm and Halsey models best fitted the isotherm data. The thermodynamic studies indicated that the adsorption reaction was a spontaneous and exothermic process. Therefore, MMIP based on the hybrid monomer of MAA-βCD shows good potential of a new monomer in molecularly imprinted polymer preparation and can be used as an effective adsorbent for the removal of BPA from aqueous solutions.