This experiment was conducted to investigate and compare the efficacy of different feed additives on performance, tibial dyschondroplasia (TD) incidence and tibia characteristics of male broilers fed low-calcium diets. A completely randomized design, with six treatments and five replicates of five chicks per each was used. Experimental treatments were: (i) Basal diet containing recommended level of calcium (0.9%) as control treatment (Ctrl), (ii) low-calcium (0.67%) diet without any additive (LC), (iii) low-calcium diet + probiotic (2 g/kg diet), (iv) low-calcium diet + prebiotic (2 g/kg diet), (v) low-calcium diet + synbiotic [mix of probiotic and prebiotic (each 2 g/kg diet)], (vi) low-calcium diet + organic acid (1.5 g/kg diet). Birds were reared in an open-sided house system under natural tropical condition until 21 days of age. Feeding with low-calcium diet negatively influenced broiler performance (body weight, body weight gain and feed conversion ratio) and tibia characteristics, whereas dietary inclusion of all feed additives had beneficial effects on above-mentioned parameters and helped the birds to overcome problems related to low-calcium diets. Different treatments had no effect on TD incidence.
High environmental temperature has detrimental effects on the gastrointestinal tract of poultry. An experiment was conducted to determine the effect of acute heat stress on endogenous amino acid (EAA) flow in broiler chickens. A total of 90, day-old broiler chicks were housed in battery cages in an environmentally controlled chamber. Chicks were fed a nitrogen-free diet on day 42 following either no heat exposure (no-heat) or 2 weeks exposure to 35 ± 1 °C for 3 h from days 28 to 42 (2-week heat) or 1 week exposure to 35 ± 1 °C for 3 h from days 35 to 42 (1 week heat). The most abundant amino acid in the ileal flow was glutamic acid, followed by aspartic acid, serine and threonine in non-heat stressed group. The EAA flow in 1-week heat and 2-week heat birds were significantly (p < 0.05) higher than those under no heat exposure (14682, 11161 and 9597 mg/kg of dry matter intake respectively). Moreover, the EAA flow of 2-week heat group was less than 1-week heat group by approximately 36%. These observations suggest that the effect of heat stress on EAA flow is mostly quantitative; however, heat stress may also alter the content of EAA flow qualitatively.
1. An experiment was conducted to determine the effects of supposedly unpleasant physical treatment on broiler performance, small intestinal development and ameliorating role of probiotics. 2. The following treatments were applied from day one: (1) chicks exposed to normal human contact fed basal diet (control); (2) chicks were exposed to unpleasant physical treatment and fed basal diet (UPT-BD); and (3) chicks were exposed to unpleasant physical treatment and fed basal diet supplemented with Lactobacillus (UPT-BDL). Chicks were exposed to UPT from days 1 to 21. Different segments of gastrointestinal tract were sampled at 14, 28, 35 and 42 d of age. 3. Broilers of UPT-BD had lower feed consumption compared with control group at 7 d of age. Overall, UPT-BDL birds showed higher body weight gain (BWG) and better feed conversion ratio (FCR) over the course of the experiment. 4. Birds of UPT-BD had lower concentrations of lactic, propionic and butyric acids in the caecum as compared with other groups at 14 d of age. Acetic acid concentration was profoundly decreased in both UPT groups compared to the control. 5. Duodenal villus height of UPT-BD broilers showed a slight reduction compared to the control and UPT-BDL birds at 14 d of age. Afterwards until day 42, UPT-BDL birds showed the highest villus height among treatments in different parts of the small intestine. 6. The results suggested that, even though UPT did not have significant inhibitory effects on the development of the small intestine and broiler performance, it negatively affected bacterial metabolic end products in the caecum, which could be ameliorated by the addition of Lactobacillus.
To assess the probiotic effects of Lactobacillus agilis JCM 1048 and L. salivarius ssp. salicinius JCM 1230 and the pH on the cecal microflora of chicken and metabolic end products.
Among the bacterial fermentation end products in the chicken cecum, butyrate is of particular importance because of its nutritional properties for the epithelial cell and pathogen inhibitory effects in the gut. An in vitro experiment, operated with batch bioreactor, was conducted to quantify butyric-producing bacteria in a simulated broiler cecum supplemented with Lactobacillus salivarius ssp. salicinius JCM 1230 and Lactobacillus agilis JCM 1048 during 24 h of incubation. Selected bacterial species were determined by real-time PCR and short-chain fatty acids and lactate concentrations were monitored. The results showed that after 24 h of incubation, Lactobacillus supplementation significantly increased the number of lactobacilli, bifidobacteria and Faecalibacterium prausnitzii in medium containing cecal content and lactobacilli supplementation (Cc + L) compared with the control (Cc). Addition of lactobacilli did not alter Escherichia coli and Clostridium butyricum, whereas it significantly (P < 0.05) reduced Salmonella in treatment Cc + L compared with the Cc treatment. Propionate and butyrate formation were significantly (P < 0.05) increased in treatment Cc + L as compared with the Cc treatment. Lactate was only detected in treatment containing 2 Lactobacillus strains. After 24 h of incubation, acetate concentration significantly (P < 0.05) decreased in all treatments. It was suggested that lactate produced by Lactobacillus in the cecal content improved the growth of butyric producers such as F. prausnitzii, which significantly increased butyrate accumulation. Additionally, the results showed that butyrate and propionate inhibited Salmonella without influencing the E. coli profile.
Stressors may influence chicken susceptibility to pathogens such as Salmonella enterica. Feed withdrawal stress can cause changes in normal intestinal epithelial structure and may lead to increased attachment and colonization of Salmonella. This study aimed to investigate modulatory effects of epigenetic modification by feed restriction on S. enterica serovar Enteritidis colonization in broiler chickens subjected to feed withdrawal stress. Chicks were divided into four groups: ad libitum feeding; ad libitum feeding with 24-h feed withdrawal on day 42; 60% feed restriction on days 4, 5, and 6; and 60% feed restriction on days 4, 5, and 6 with 24-h feed withdrawal on day 42. Attachment of S. Enteritidis to ileal tissue was determined using an ex vivo ileal loop assay, and heat shock protein 70 (Hsp70) expression was evaluated using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and western blotting. Feed withdrawal stress increased S. Enteritidis attachment to ileal tissue. However, following feed withdrawal the epigenetically modified chickens had significantly lower attachment of S. Enteritidis than their control counterparts. A similar trend with a very positive correlation was observed for Hsp70 expression. It appears that epigenetic modification can enhance resistance to S. Enteritidis colonization later in life in chickens under stress conditions. The underlying mechanism could be associated with the lower Hsp70 expression in the epigenetically modified chickens.