Displaying all 4 publications

Abstract:
Sort:
  1. Malarvili MB, Mesbah M
    IEEE Trans Biomed Eng, 2009 Nov;56(11):2594-603.
    PMID: 19628449 DOI: 10.1109/TBME.2009.2026908
    In this paper, we investigate the use of heart rate variability (HRV) for automatic newborn seizure detection. The proposed method consists of a sequence of processing steps, namely, obtaining HRV from the ECG, extracting a discriminating HRV feature set, selecting an optimal subset from the full feature set, and, finally, classifying the HRV into seizure/nonseizure using a supervised statistical classifier. Due to the fact that HRV signals are nonstationary, a set of time-frequency features from the newborn HRV is proposed and extracted. In order to achieve efficient HRV-based automatic newborn seizure detection, a two-phase wrapper-based feature selection technique is used to select the feature subset with minimum redundancy and maximum class discriminability. Tested on ECG recordings obtained from eight newborns with identified EEG seizure, the proposed HRV-based neonatal seizure detection algorithm achieved 85.7% sensitivity and 84.6% specificity. These results suggest that the HRV is sensitive to changes in the cardioregulatory system induced by the seizure, and therefore, can be used as a basis for an automatic seizure detection.
  2. Manojkumar U, Kaliannan D, Srinivasan V, Balasubramanian B, Kamyab H, Mussa ZH, et al.
    Chemosphere, 2023 May;323:138263.
    PMID: 36858116 DOI: 10.1016/j.chemosphere.2023.138263
    Green synthesis of nanomaterials has emerged as an ecofriendly sustainable technology for the removal of dyes in the last few decades. Especially, plant leaf extracts have been considered as inexpensive and effective materials for the synthesis of nanoparticles. In this study, zinc oxide nanoparticles (ZnO NPs) were prepared using leaves extract of Brassica oleracea var. botrytis (BO) by co-precipitation and applied for photocatalytic/antibacterial activity. The synthesized BO-ZnO NPs was characterized by different instrumental techniques. The UV-vis Spectrum of the synthesized material showed maximum absorbance at a wavelength of 311 nm, which confirmed the formation of BO-ZnO NPs. The XRD pattern of BO-ZnO NPs represents a hexagonal wurtzite structure and the average size of particles was about 52 nm. FT-IR spectrum analysis confirms the presence of hydroxyl, carbonyl, carboxylic, and phenol groups. SEM images exhibited a flower like morphology and EDX spectrum confirming the presence of the elements Zn and O. Photo-catalytic activity of BO-ZnO NPs was tested against thiazine dye (methylene blue-MB) degradation under direct sunlight irradiation. Around 80% of the MB dye got degraded at pH 8 under 75 min of sunlight irradiation. Further, the study examined that the antimicrobial and larvicidal activity of BO-ZnO NPs obtained through green synthesis. The antimicrobial study results showed that the BO-ZnO NPs formed zones against bacterial pathogens. The results showed the formation of an inhibition zone against B. subtills (16 mm), S.aureus (13 mm), K. pneumonia (13 mm), and E. coli (9 mm) respectively at a concentration of 100 μg/mL of BO-ZnO NPs. The larvicidal activity of the BO-ZnO NPs was tested against the fourth instar of Culex quinquefasciatus mosquito larvae The LC50 and LC90 values estimated through the larvicidal activity of BO-ZnO NPs were 76.03, 190.03 ppm respectively. Hence the above findings propose the synthesized BO-ZnO NPs by the ecofriendly method can be used for various environmental and antipathogenic applications.
  3. Javad Sajjadi Shourije SM, Dehghan P, Bahrololoom ME, Cobley AJ, Vitry V, Pourian Azar GT, et al.
    Chemosphere, 2023 Mar;317:137829.
    PMID: 36640980 DOI: 10.1016/j.chemosphere.2023.137829
    In this study, fish scales (Pomadasys kaakan's scales) were used as new biosorbent for removing Ni2+ and Cu2+ ions from wastewater. The effects of electric and magnetic fields on the absorption efficiency were also investigated. The effects of sorbent content, ion concentration, contact time, pH, electric field (EF), and magnetic field (MF) on absorption efficiency were assertained. In addition, the isotherm of absorption was studied in this work. This study revealed that electric field and magnetic field have significant effects on the absorption efficiency of ions from wastewater. An increase in the electric field enhanced the removal percentage of the ions and accelerated the absorption process by up to 40% in comparison with the same condition without an electric field or a magnetic field. By increasing contact time from 10 to 120 min, the removal of Ni2+ ions was increased from 1% to 40% and for Cu2+ ions, the removal increased from 20% to almost 95%, respectively. In addition, increasing pH, ion concentration and scales dose increased removal percentage effectively. The results indicated that using fish scales for Cu2+ ions absorption is ideal due to the very high removal percentage (approximately 95%) without using either an electric or magnetic field.
  4. Pereda J, Niimi G, Kaul JM, Mishra S, Pangtey B, Peri D, et al.
    Surg Radiol Anat, 2009 Sep;31 Suppl 1:49-93.
    PMID: 27392491 DOI: 10.1007/BF03371485
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links