Titanium dioxide (TiO2) with highly exposed {001} facets was synthesized through a facile solvo-thermal method and its surface was decorated by using reduced graphene oxide (rGO) sheets. The morphology and chemical composition of the prepared rGO/TiO2 {001} nanocomposite were examined by using suitable characterization techniques. The rGO/TiO2 {001} nanocomposite was used to modify glassy carbon electrode (GCE), which showed higher electrocatalytic activity towards the oxidation of dopamine (DA) and ascorbic acid (AA), when compared to unmodified GCE. The differential pulse voltammetric studies revealed good sensitivity and selectivity nature of the rGO/TiO2 {001} nanocomposite modified GCE for the detection of DA in the presence of AA. The modified GCE exhibited a low electrochemical detection limit of 6 μM over the linear range of 2-60 μM. Overall, this work provides a simple platform for the development of GCE modified with rGO/TiO2 {001} nanocomposite with highly exposed {001} facets for potential electrochemical sensing applications.
This paper presents a unique synergistic behavior between a graphene oxide (GO) and graphene nanoplatelet (GnP) composite in an aqueous medium. The results showed that GO stabilized GnP colloid near its isoelectric point and prevented rapid agglomeration and sedimentation. It was considered that a rarely encountered charge-dependent electrostatic interaction between the highly charged GO and weakly charged GnP particles kept GnP suspended at its rapid coagulation and phase separation pH. Sedimentation and transmission electron microscope (TEM) micrograph images revealed the evidence of highly stable colloidal mixtures while zeta potential measurement provided semi-quantitative explanation on the mechanism of stabilization. GnP suspension was confirmed via UV-vis spectral data while contact angle measurement elucidated the close resemblance to an aqueous solution indicating the ability of GO to mediate the flocculation prone GnP colloids. About a tenfold increase in viscosity was recorded at a low shear rate in comparison to an individual GO solution due to a strong interaction manifested between participating colloids. An optimum level of mixing ratio between the two constituents was also obtained. These new findings related to an interaction between charge-based graphitic carbon materials would open new avenues for further exploration on the enhancement of both GO and GnP functionalities particularly in mechanical and electrical domains.