Displaying all 2 publications

Abstract:
Sort:
  1. Singh V, Haque S, Kumari V, El-Enshasy HA, Mishra BN, Somvanshi P, et al.
    Sci Rep, 2019 04 24;9(1):6482.
    PMID: 31019210 DOI: 10.1038/s41598-019-42740-7
    Arterial/venous thrombosis is the major cardiovascular disorder accountable for substantial mortality; and the current demand for antithrombotic agents is extensive. Heparinases depolymerize unfractionated heparin (UFH) for the production of low molecular-weight heparins (LMWHs; used as anticoagulants against thrombosis). A microbial strain of Streptomyces sp. showing antithrombotic activity was isolated from the soil sample collected from north India. The strain was characterized by using 16S rRNA homology technique and identified as Streptomyces variabilis MTCC 12266 capable of producing heparinase enzyme. This is the very first communication reporting Streptomyces genus as the producer of heparinase. It was observed that the production of intracellular heparinase was [63.8 U/mg protein (specific activity)] 1.58 folds higher compared to extracellular heparinase [40.28 U/mg protein]. DEAE-Sephadex A-50 column followed by Sepharose-6B column purification of the crude protein resulted 19.18 folds purified heparinase. SDS-PAGE analysis of heparinase resulted an estimated molecular-weight of 42 kDa. It was also found that intracellular heparinase has the ability to depolymerize heparin to generate LMWHs. Further studies related to the mechanistic action, structural details, and genomics involved in heparinase production from Streptomyces variabilis are warranted for large scale production/purification optimization of heparinase for antithrombotic applications.
  2. Sharma N, Singh V, Pandey AK, Mishra BN, Kulsoom M, Dasgupta N, et al.
    Biomolecules, 2019 11 21;9(12).
    PMID: 31766572 DOI: 10.3390/biom9120764
    Nanoparticles (NPs) possessing antibacterial activity represent an effective way of overcoming bacterial resistance. In the present work, we report a novel formulation of a nanoantibiotic formed using Ampicillin/sulbactam (Ams) and a zinc oxide nanoparticle (ZnO NP). 'ZnO NP-Ams' nanoantibiotic formulation is optimized using response surface methodology coupled genetic algorithm approach. The optimized formulation of nanoantibiotic (ZnO NP: 49.9 μg/mL; Ams: 33.6 μg/mL; incubation time: 27 h) demonstrated 15% enhanced activity compared to the unoptimized formulation against K. pneumoniae. The reactive oxygen species (ROS) generation was directly proportional to the interaction time of nanoantibiotic and K. pneumoniae after the initial lag phase of ~18 h as evident from 2'-7'-Dichlorodihydrofluorescein diacetate assay. A low minimum inhibitory concentration (6.25 μg/mL) of nanoantibiotic formulation reveals that even a low concentration of nanoantibiotic can prove to be effective against K. pneumoniae. The importance of nanoantibiotic formulation is also evident by the fact that the 100 μg/mL of Ams and 25 µg of ZnO NP was required individually to inhibit the growth of K. pneumonia, whereas only 6.25 μg/mL of optimized nanoantibiotic formulation (ZnO NP and Ams in the ratio of 49.9: 33.6 in μg/mL and conjugation time of 27 h) was needed for the same.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links