Displaying all 2 publications

Abstract:
Sort:
  1. Yap MKK, Misuan N
    PMID: 30417596 DOI: 10.1111/bcpt.13169
    Type II diabetes mellitus (T2DM) is a chronic non-communicable disease due to abnormal insulin actions causing uncontrolled hyperglycaemia. The treatment for T2DM, for instance, metformin and incretin mimetic, mainly focuses on the restoration of insulin sensitivity and secretion. Exendin-4 is a short incretin-mimetic peptide consisting of 39 amino acids. It is discovered in the venom of Heloderma suspectum as a full agonist for the glucagon-like peptide 1 (GLP-1) receptor and produces insulinotropic effects. It is more resistant to enzymatic degradation by dipeptidyl-peptidase-4 and has a longer half-life than the endogenous GLP-1; thus, it is further developed as an incretin hormone analogue used to treat T2DM. The helical region of the peptide first interacts with the extracellular N-terminal domain (NTD) of GLP-1 receptor while the C-terminal extension containing the tryptophan cage further enhances its binding affinity. After binding to the NTD of the receptor, it may cause the receptor to switch from its auto-inhibited state of the receptor to its auto-activated state. Exendin-4 enhances the physiological functions of β-cells and the up-regulation of GLP-1 receptors, thus reducing the plasma glucose levels. Moreover, exendin-4 has also been found to ameliorate neuropathy, nephropathy and ventricular remodelling. The therapeutic effects of exendin-4 have also been extrapolated into several clinical trials. Although exendin-4 has a reasonable subcutaneous bioavailability, its half-life is rather short. Therefore, several modifications have been undertaken to improve its pharmacokinetics and insulinotropic potency. This review focuses on the pharmacology of exendin-4 and the structure-function relationships of exendin-4 with GLP-1 receptor. The review also highlights some challenges and future directions in the improvement of exendin-4 as an anti-diabetic drug.
  2. Misuan N, Mohamad S, Tubiana T, Yap MKK
    J Biomol Struct Dyn, 2023 Mar 16.
    PMID: 36927291 DOI: 10.1080/07391102.2023.2188945
    Cytotoxin (CTX) is a three-finger toxin presents predominantly in cobra venom. The functional site of the toxin is located at its three hydrophobic loop tips. Its actual mechanism of cytotoxicity remains inconclusive as few conflicting hypotheses have been proposed in addition to direct cytolytic effects. The present work investigated the interaction between CTX and death receptor families via ensemble-based molecular docking and fluorescence titration analysis. Multiple sequence alignments of different CTX isoforms obtained a conserved CTX sequence. The three-dimensional structure of the conserved CTX was later determined using homology modelling, and its quality was validated. Ensemble-based molecular docking of CTX was performed with different death receptors, such as Fas-ligand and tumor necrosis factor receptor families. Our results showed that tumor necrosis factor receptor 1 (TNFR1) was the best receptor interacting with CTX attributed to the interaction of all three functional loops and evinced with low HADDOCK, Z-score and RMSD value. The interaction between CTX and TNFR1 was also supported by a concentration-dependent reduction of fluorescence intensity with increasing binding affinity. The possible intermolecular interactions between CTX and TNFR1 were Van der Waals forces and hydrogen bonding. Our findings suggest a possibility that CTX triggers apoptosis cell death through non-covalent interactions with TNFR1.Communicated by Ramaswamy H. Sarma.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links