Displaying all 4 publications

Abstract:
Sort:
  1. Tang CN, Kuwahara VS, Leong SCY, Moh PY, Yoshida T
    Mar Pollut Bull, 2023 Aug;193:115182.
    PMID: 37352797 DOI: 10.1016/j.marpolbul.2023.115182
    Plankton seasonality in tropical coastal waters is becoming more apparent as a result of monsoon-driven changes in environmental conditions, but research on the monsoonal variation of microplastics (MP) is still limited. We examined the monsoonal variation of MP in the water column and their ingestion by zooplankton in Sepanggar Bay, Sabah, Malaysia. MP concentrations were significantly higher during the Southwest monsoon whereas MP ingestions showed no monsoonal difference across major zooplankton taxa. Canonical Correspondence Analysis (CCA) and Generalized Additive Models (GAM) indicate that MP concentrations were driven by changes in rainfall and salinity while MP bioavailability to zooplankton was consistent regardless of monsoon. MP ingestion increased progressively up the planktonic food chain, and bioavailability of fibers and small-sized MP of high-density polymers to zooplankton was proportionately higher. Distinct changes in the MP concentration relative to the monsoons provide new insights into the seasonal variation of MP in tropical coastal ecosystems.
  2. Puah PY, Moh PY, Sipaut CS, Lee PC, How SE
    Polymers (Basel), 2021 Sep 26;13(19).
    PMID: 34641106 DOI: 10.3390/polym13193290
    Graphene oxide (GO) is extensively studied as a template material for mesenchymal stem cell application due to its two-dimensional nature and unique functionalization chemistries. Herein, a new type of peptide-conjugated multilayer graphene oxide (peptide/m-GO film) was fabricated and used as biomaterial for culturing human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs). The characterization of the peptide/m-GO films was performed, and the biocompatibility of the WJ-MSCs on the peptide/m-GO films was investigated. The results demonstrated that the peptide conjugate on the m-GO film did not hamper the normal growth of WJ-MSCs but supported the growth of WJ-MSCs after the 6-day culture period. In addition, the osteogenic differentiation of WJ-MSCs on the peptide/m-GO films was enhanced as compared with the parent m-GO film. Therefore, such peptide-conjugated m-GO films could provide a highly biocompatible and multifunctional 2D material to tailor the potential application of WJ-MSCs in bone tissue regeneration.
  3. Puah PY, Herng Lee DJ, Mak KH, Ang HJ, Chen HC, Moh PY, et al.
    RSC Adv, 2019 Oct 07;9(55):31918-31927.
    PMID: 35702663 DOI: 10.1039/c9ra06198c
    The removal of particles using fluoropolymer-based membrane filters is usually done so to prolong the life span of an analytical column, prevent hardware damage, and reduce signal suppression. Ironically, these membrane filters tend to leach impurities into the samples as the samples are filtered through them. These impurities have the potential to affect the researcher's interpretation in high-throughput, non-targeted analysis. In this study, extractable impurities from different brands of fluoropolymer-based membrane filters present in the filtrate filtered using the said filters were investigated. The results demonstrated that different brand membrane filters and materials tend to elute vastly different numbers of impurities. There were instances whereby the extractable impurities persisted in both the membrane filter and the filtrate despite the filter being pre-conditioned (up to 3 times). Principle component analysis revealed that filtrates at different purge intervals are distant from the unfiltered samples. Pre-conditioning of the PTFE membrane filters could potentially reduce the number of extractable impurities across the tested brands. PVDF filtrates, however, tend to co-cluster with their respective brands, thus suggesting that dissimilarity persists in brands following conditioning. As such, pre-conditioning of the PTFE membrane filters should be encouraged so as to reduce false positive results, while the use of PVDF membrane filters for mass-spectrometry-based untargeted analysis is not advisable as extractable impurities would still persist after 3 rounds of conditioning. Neither the use of different filter brands, nor the use of different filter materials in a sample batch are encouraged as different membrane materials or brands could potentially elute varying impurities.
  4. Juhim F, Chee FP, Awang A, Moh PY, Mohd Salleh KA, Ibrahim S, et al.
    Heliyon, 2023 Nov;9(11):e22529.
    PMID: 38074862 DOI: 10.1016/j.heliyon.2023.e22529
    Radiation shielding incorporates material between the radioactive source and environment to decrease exposure to hazardous radiation. It remains to be seen whether the addition of nanoparticles effectively increases the protection of tellurite glass system from further degradation under irradiation conditions. This study revealed the gamma radiation effects on tellurite glass. The tellurite glass samples were irradiated with 50 kGy and 100 kGy gamma ray, and subsequently analysed using X-ray diffractometer (XRD), atomic force microscopy (AFM), and ultraviolet-visible spectroscopy (UV-Vis). Gamma radiation increased the creation of non-bridging oxygen (NBO) and caused colour change on TZNETi and TZNETiAl glasses. Consequently, the addition of aluminium oxides (Al2O3) was found to lower the density of glass systems. The glass samples surface roughness increased, while the optical transmission spectra decreased after 50 kGy of gamma ray irradiation. Nevertheless, the glass system maintained its transparency even after irradiation. The mass attenuation coefficient (MAC) values represented the shielding effectiveness demonstrated by the investigated glass with the addition of Al2O3. The physical, structural, optical, and radiation shielding properties showed that 69.1TeO2-20ZnO-9Na2O-1Er2O3-0.3TiO2-0.6Al2O3 (TZNETiAl) sample exhibited strong shielding properties amongst the fabricated tellurite samples.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links