Membrane-bound fatty acid desaturases perform oxygenated desaturation reactions to insert double bonds within fatty acyl chains in regioselective and stereoselective manners. The Δ9-fatty acid desaturase strictly creates the first double bond between C9 and 10 positions of most saturated substrates. As the three-dimensional structures of the bacterial membrane fatty acid desaturases are not available, relevant information about the enzymes are derived from their amino acid sequences, site-directed mutagenesis and domain swapping in similar membrane-bound desaturases. The cold-tolerantPseudomonassp. AMS8 was found to produce high amount of monounsaturated fatty acids at low temperature. Subsequently, an active Δ9-fatty acid desaturase was isolated and functionally expressed inEscherichia coli. In this paper we report homology modeling and docking studies of a Δ9-fatty acid desaturase from a Cold-tolerantPseudomonassp. AMS8 for the first time to the best of our knowledge. Three dimensional structure of the enzyme was built using MODELLER version 9.18 using a suitable template. The protein model contained the three conserved-histidine residues typical for all membrane-bound desaturase catalytic activity. The structure was subjected to energy minimization and checked for correctness using Ramachandran plots and ERRAT, which showed a good quality model of 91.6 and 65.0%, respectively. The protein model was used to preform MD simulation and docking of palmitic acid using CHARMM36 force field in GROMACS Version 5 and Autodock tool Version 4.2, respectively. The docking simulation with the lowest binding energy, -6.8 kcal/mol had a number of residues in close contact with the docked palmitic acid namely, Ile26, Tyr95, Val179, Gly180, Pro64, Glu203, His34, His206, His71, Arg182, Thr85, Lys98 and His177. Interestingly, among the binding residues are His34, His71 and His206 from the first, second, and third conserved histidine motif, respectively, which constitute the active site of the enzyme. The results obtained are in compliance with thein vivoactivity of the Δ9-fatty acid desaturase on the membrane phospholipids.
Burkholderia Lethal Factor 1 (BLF1) is a deamidase first characterized in Burkholderia pseudomallei. This enzyme inhibits cellular protein synthesis by deamidating a glutamine residue to a glutamic acid in its target protein, the eukaryotic translation initiation factor 4 A (eIF4A). In this work, we present the characterization of a hypothetical protein from Xanthomonas sp. Leaf131 as the first report of a BLF1 family ortholog outside of the Burkholderia genus. Although standard sequence similarity searches such as BLAST were not able to detect the homology between the Xanthomonas sp. Leaf131 hypothetical protein sequence and BLF1, our computed structure model for the Xanthomonas sp. hypothetical protein revealed structural similarities with an RMSD of 2.7 Å/164 Cα atoms and a TM-score of 0.72 when superposed. Structural comparisons of the Xanthomonas model structure against BLF1 and Escherichia coli cytotoxic necrotizing factor 1 (CNF1) revealed that the conserved signature LXGC motif and putative catalytic residues are structurally aligned thus signifying a level of functional or mechanistic similarity. Protein-protein docking analysis and molecular dynamics simulations also demonstrated that eIF4A could still be a possible target substrate for deamidation by XLF1 as it is for BLF1. We therefore propose that this Xanthomonas hypothetical protein be renamed as Xanthomonas Lethal Factor 1 (XLF1). Our work also provides further evidence of the utility of programs such as AlphaFold in bridging the computational function annotation transfer gap despite very low sequence identities of under 20%.Communicated by Ramaswamy H. Sarma.