Sediment cores were taken at eight stations along Sarawak and Sabah coastal waters using a gravity box corer on July 2004. The sediment cores were cut into 2 cm interval for measurement of Mn and Fe concentration using the Inductive Couple Plasma-Mass Spectrometer (ICP-MS). Overall, the sediment cores contained much mud which include a mixture of silt (46 – 67%) and clay (18 – 53%) compared to sand (0.4 – 16%). The concentrations of Mn and Fe were in the range of 154 – 366 µg/g and 0.9 – 3.4%, respectively. The variation was studied by ANOVA, which showed a significant difference (p = 0.000) for both of Mn and Fe concentrations at all sampling stations. In those ranges, Fe concentration was higher compared to Mn. It is believed that dissolving and diluting process influenced the concentration of Mn in the water column and sediment. Fe showed a significant correlation (r > 0.5, p < 0.01) with Mn at all stations except SR 03, indicating the natural occurrence of Mn and Fe in the water column. Meanwhile, Müller classification proved that sediment cores taken at 8 stations along Sarawak and Sabah coastal waters were not polluted with Fe and Mn with geoaccumulation index, Igeo < 1 and classification 0 – 1.
Keywords: Fe; Mn; Müller classification; organic carbon; particle size; sediment core
The heavy metal contents (Cr, Cu, Zn, Cd, Pb, Hg, and As) of 88 surface sediment samples from the western Sunda Shelf were analyzed to determine their spatial distribution patterns and contamination status. The results demonstrated that high enrichment regions of heavy metals were focused in the Kelantan, Pahang, and Ambat river estuaries, and deep water regions of the study area. These high enrichment regions were mainly controlled by riverine inputs and their hydrodynamic conditions. The enrichment factor (EF), geoaccumulation index (Igeo), and potential ecological risk index (PERI) were used to assess heavy metal accumulation. The results indicated that the study area was not significantly contaminated overall at the time of the study; however, Cd, As, and Hg were at levels corresponding to moderate contamination at many stations located in the Pahang River estuary, Kelantan River estuary, and north-eastern region of the study area, primarily because of anthropogenic activities.
The presence of toxic polonium-210 (Po-210) in the environment is due to the decay of primordial uranium-238. Meanwhile, several studies have reported elevated Po-210 radioactivity in the rivers around the world due to both natural and anthropogenic factors. However, the primary source of Po-210 in Langat River, Malaysia might be the natural weathering of granite rock along with mining, agriculture and industrial activities. Hence, this is the first study to determine the Po-210 activity in the drinking water supply chain in the Langat River Basin to simultaneously predict the human health risks of Po-210 ingestion. Therefore, water samples were collected in 2015⁻2016 from the four stages of the water supply chain to analyze by Alpha Spectrometry. Determined Po-210 activity, along with the influence of environmental parameters such as time-series rainfall, flood incidents and water flow data (2005⁻2015), was well within the maximum limit for drinking water quality standard proposed by the Ministry of Health Malaysia and World Health Organization. Moreover, the annual effective dose of Po-210 ingestion via drinking water supply chain indicates an acceptable carcinogenic risk for the populations in the Langat Basin at 95% confidence level; however, the estimated annual effective dose at the basin is higher than in many countries. Although several studies assume the carcinogenic risk of Po-210 ingestion to humans for a long time even at low activity, however, there is no significant causal study which links Po-210 ingestion via drinking water and cancer risk of the human. Since the conventional coagulation method is unable to remove Po-210 entirely from the treated water, introducing a two-layer water filtration system at the basin can be useful to achieve SDG target 6.1 of achieving safe drinking water supplies well before 2030, which might also be significant for other countries.
Mangrove forests can help to mitigate climate change by storing a significant amount of carbon (C) in soils. Planted mangrove forests have been established to combat anthropogenic threats posed by climate change. However, the efficiency of planted forests in terms of soil organic carbon (SOC) storage and dynamics relative to that of natural forests is unclear. We assessed SOC and nutrient storage, SOC sources and drivers in a natural and a planted forest in southern Thailand. Although the planted forest stored more C and nutrients than the natural forest, the early-stage planted forest was not a strong sink relative to mudflat. Both forests were predominated by allochthonous organic C and nitrogen limited, with total nitrogen being a major driver of SOC in both cases. SOC showed a significant decline along land-to-sea and depth gradients as a result of soil texture, nutrient availability, and pH in the natural forest.