This paper presents a study on gene knockout strategies to identify candidate genes to be knocked out for improving the production of succinic acid in Escherichia coli. Succinic acid is widely used as a precursor for many chemicals, for example production of antibiotics, therapeutic proteins and food. However, the chemical syntheses of succinic acid using the traditional methods usually result in the production that is far below their theoretical maximums. In silico gene knockout strategies are commonly implemented to delete the gene in E. coli to overcome this problem. In this paper, a hybrid of Ant Colony Optimization (ACO) and Minimization of Metabolic Adjustment (MoMA) is proposed to identify gene knockout strategies to improve the production of succinic acid in E. coli. As a result, the hybrid algorithm generated a list of knockout genes, succinic acid production rate and growth rate for E. coli after gene knockout. The results of the hybrid algorithm were compared with the previous methods, OptKnock and MOMAKnock. It was found that the hybrid algorithm performed better than OptKnock and MOMAKnock in terms of the production rate. The information from the results produced from the hybrid algorithm can be used in wet laboratory experiments to increase the production of succinic acid in E. coli.
In recent years, metabolic engineering has gained central attention in numerous fields of science because of its capability to manipulate metabolic pathways in enhancing the expression of target phenotypes. Due to this, many computational approaches that perform genetic manipulation have been developed in the computational biology field. In metabolic engineering, conventional methods have been utilized to upgrade the generation of lactate and succinate in E. coli, although the yields produced are usually way below their theoretical maxima. To overcome the drawbacks of such conventional methods, development of hybrid algorithm is introduced to obtain an optimal solution by proposing a gene knockout strategy in E. coli which is able to improve the production of lactate and succinate. The objective function of the hybrid algorithm is optimized using a swarm intelligence optimization algorithm and a Simple Constrained Artificial Bee Colony (SCABC) algorithm. The results maximize the production of lactate and succinate by resembling the gene knockout in E. coli. The Flux Balance Analysis (FBA) is integrated in a hybrid algorithm to evaluate the growth rate of E. coli as well as the productions of lactate and succinate. This results in the identification of a gene knockout list that contributes to maximizing the production of lactate and succinate in E. coli.