Displaying all 2 publications

Abstract:
Sort:
  1. Mohammad Hood MH, Tengku Abdul Hamid TH, Abdul Wahab RA, Huyop FZ, Kaya Y, Abdul Hamid AAA
    J Biomol Struct Dyn, 2023 Apr;41(7):2831-2847.
    PMID: 35174777 DOI: 10.1080/07391102.2022.2039772
    Efficacy of a β-1,4-glucosidase from Trichoderma harzianum T12 (ThBglT12) in disrupting the cell wall of the phytopathogenic fungus M. phaseolina (Macrophomina phaseolina) was studied, as the underlying molecular mechanisms of cell wall recognition remains elusive. In this study, the binding location identified by a consensus of residues predicted by COACH tool, blind docking, and multiple sequence alignment revealed that molecular recognition by ThBglT12 occurred through interactions between the α-1,3-glucan, β-1,3-glucan, β-1,3/1,4-glucan, and chitin components of M. phaseolina, with corresponding binding energies of -7.4, -7.6, -7.5 and -7.8 kcal/mol. The residue consensus verified the participation of Glu172, Tyr304, Trp345, Glu373, Glu430, and Trp431 in the active site pocket of ThBglT12 to bind the ligands, of which Trp345 was the common interacting residue. Root mean square deviation (RMSD), root mean square fluctuation (RMSF), total energy, and minimum distance calculation from molecular dynamics (MD) simulation further confirmed the stability and the closeness of the binding ligands into the ThBglT12 active site pocket. The h-bond occupancy by Glu373 and Trp431 instated the role of the nucleophile for substrate recognition and specificity, crucial for cleaving the β-1,4 linkage. Further investigation showed that the proximity of Glu373 to the anomeric carbon of β-1,3/1,4-glucan (3.5 Å) and chitin (5.5 Å) indicates the nucleophiles' readiness to form enzyme-substrate intermediates. Plus, the neighboring water molecule appeared to be correctly positioned and oriented towards the anomeric carbon to hydrolyze the β-1,3/1,4-glucan and chitin, in less than 4.0 Å. In a nutshell, the study verified that the ThBglT12 is a good alternative fungicide to inhibit the growth of M. phaseolina.Communicated by Ramaswamy H. Sarma.
  2. Wahhab BH, Oyewusi HA, Wahab RA, Mohammad Hood MH, Abdul Hamid AA, Al-Nimer MS, et al.
    J Biomol Struct Dyn, 2024;42(3):1429-1442.
    PMID: 37038649 DOI: 10.1080/07391102.2023.2199870
    This study presents the initial structural model of L-haloacid dehalogenase (DehLBHS1) from Bacillus megaterium BHS1, an alkalotolerant bacterium known for its ability to degrade halogenated environmental pollutants. The model provides insights into the structural features of DehLBHS1 and expands our understanding of the enzymatic mechanisms involved in the degradation of these hazardous pollutants. Key amino acid residues (Arg40, Phe59, Asn118, Asn176, and Trp178) in DehLBHS1 were identified to play critical roles in catalysis and molecular recognition of haloalkanoic acid, essential for efficient binding and transformation of haloalkanoic acid molecules. DehLBHS1 was modeled using I-TASSER, yielding a best TM-score of 0.986 and an RMSD of 0.53 Å. Validation of the model using PROCHECK revealed that 89.2% of the residues were located in the most favored region, providing confidence in its structural accuracy. Molecular docking simulations showed that the non-simulated DehLBHS1 preferred 2,2DCP over other substrates, forming one hydrogen bond with Arg40 and exhibiting a minimum energy of -2.5 kJ/mol. The simulated DehLBHS1 exhibited a minimum energy of -4.3 kJ/mol and formed four hydrogen bonds with Arg40, Asn176, Asp9, and Tyr11, further confirming the preference for 2,2DCP. Molecular dynamics simulations supported this preference, based on various metrics, including RMSD, RMSF, gyration, hydrogen bonding, and molecular distance. MM-PBSA calculations showed that the DehLBHS1-2,2-DCP complex had a markedly lower binding energy (-21.363 ± 1.26 kcal/mol) than the DehLBHS1-3CP complex (-14.327 ± 1.738 kcal/mol). This finding has important implications for the substrate specificity and catalytic function of DehLBHS1, particularly in the bioremediation of 2,2-DCP in contaminated alkaline environments. These results provide a detailed view of the molecular interactions between the enzyme and its substrate and may aid in the development of more efficient biocatalytic strategies for the degradation of halogenated compounds.Communicated by Ramaswamy H. Sarma.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links