METHODS: We did a cohort analysis of TB cases in SECOND-LINE. TB cases included any clinical or laboratory-confirmed diagnoses and/or commencement of treatment for TB after randomization. Baseline factors associated with TB were analyzed using Cox regression stratified by site.
RESULTS: TB cases occurred at sites in Argentina, India, Malaysia, Nigeria, South Africa, and Thailand, in a cohort of 355 of the 541 SECOND-LINE participants. Overall, 20 cases of TB occurred, an incidence rate of 3.4 per 100 person-years (95% CI: 2.1 to 5.1). Increased TB risk was associated with a low CD4+-cell count (≤200 cells/μL), high viral load (>200 copies/mL), low platelet count (<150 ×109/L), and low total serum cholesterol (≤4.5 mmol/L) at baseline. An increased risk of death was associated with TB, adjusted for CD4, platelets, and cholesterol. A low CD4+-cell count was significantly associated with incident TB, mortality, other AIDS diagnoses, and virologic failure.
DISCUSSION: The risk of TB remains elevated in PLHIV in the setting of second-line HIV therapy in TB endemic regions. TB was associated with a greater risk of death. Finding that low CD4+ T-cell count was significantly associated with poor outcomes in this population supports the value of CD4+ monitoring in HIV clinical management.
METHODS: Of the 37 sites that participated in the randomised, open-label, non-inferiority SECOND-LINE study, eight sites from five countries (Argentina, India, Malaysia, South Africa, and Thailand) participated in the body composition substudy. All sites had a dual energy x-ray absorptiometry (DXA) scanner and all participants enrolled in SECOND-LINE were eligible for inclusion in the substudy. Participants were randomly assigned (1:1), via a computer-generated allocation schedule, to receive either ritonavir-boosted lopinavir plus raltegravir (raltegravir group) or ritonavir-boosted lopinavir plus two or three N(t)RTIs (N[t]RTI group). Randomisation was stratified by site and screening HIV-1 RNA. Participants and investigators were not masked to group assignment, but allocation was concealed until after interventions were assigned. DXA scans were done at weeks 0, 48, and 96. The primary endpoint was mean percentage and absolute change in peripheral limb fat from baseline to week 96. We did intention-to-treat analyses of available data. This substudy is registered with ClinicalTrials.gov, number NCT01513122.
FINDINGS: Between Aug 1, 2010, and July 10, 2011, we recruited 211 participants into the substudy. The intention-to-treat population comprised 102 participants in the N(t)RTI group and 108 participants in the raltegravir group, of whom 91 and 105 participants, respectively, reached 96 weeks. Mean percentage change in limb fat from baseline to week 96 was 16·8% (SD 32·6) in the N(t)RTI group and 28·0% (37·6) in the raltegravir group (mean difference 10·2%, 95% CI 0·1-20·4; p=0·048). Mean absolute change was 1·04 kg (SD 2·29) in the N(t)RTI group and 1·81 kg (2·50) in the raltegravir group (mean difference 0·6, 95% CI -0·1 to 1·3; p=0·10).
INTERPRETATION: Our findings suggest that for people with virological failure of a first-line regimen containing efavirenz plus tenofovir and lamivudine or emtricitabine, the WHO-recommended switch to a ritonavir-boosted protease inhibitor plus zidovudine (a thymidine analogue nucleoside reverse transcriptase inhibitor) and lamivudine might come at the cost of peripheral lipoatrophy. Further study could help to define specific groups of people who might benefit from a switch to an N(t)RTI-sparing second-line ART regimen.
FUNDING: The Kirby Institute and the Australian National Health and Medical Research Council.