The Malaysian 1 MW TRIGA MARK II research reactor at Malaysian Nuclear Agency is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the calculation of neutron flux and power distribution in PUSPATI TRIGA REACTOR (RTP) 14th core configuration. The 3-D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA core and fuels. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data as well as S (α, β) thermal neutron scattering functions distributed with the MCNP code were used. Results of calculations are analyzed and discussed.
The 1 MW TRIGA MARK II research reactor at Malaysian Nuclear Agency achieved initial
criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of
basic nuclear research, manpower training, and production of radioisotopes. This
paperdescribes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP);
focusing on the application of the developed reactor 3D model for criticality calculation,
analysis of power and neutron flux distribution and depletion study of TRIGA fuel. The 3D
continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full
model of the TRIGA reactor. The consistency and accuracy of the developed RTP MCNP model
was established by comparing calculations to the experimental results and TRIGLAV
code.MCNP and TRIGLAV criticality prediction of the critical core loading are in a very good
agreement with the experimental results.Power peaking factor calculated with TRIGLAV are
systematically higher than the MCNP but the trends are the same.Depletion calculation by both
codes show differences especially at high burnup.The results are conservative and can be
applied to show the reliability of MCNP code and the model both for design and verification of
the reactor core, and future calculation of its neutronic parameters.