Displaying all 5 publications

Abstract:
Sort:
  1. Noraishah Othmanl, Nor Pa' iza M. Hasani, Juhari Mohd Yusof, Roslan Yahya, Mohd Amirul Syafiq
    MyJurnal
    Flow measurement is a critical element for liquid resources monitoring for various applications in many industrial systems. The purposes of the study are to determine the flow rate of liquid system in flow rig using radiotracer techniques and to compare the result with that obtained by the conventional flow meters. The flow rig consists of 58.7m long and 20cm diameter pipeline that can accommodate about 0.296m3 of liquid. Tap water was used as liquid flow in pipeline and conventional flow meters were also installed at the flow rig. Radiotracer was injected as a sharp pulse into the inlet p.peline. The pulse was monitored at the inlet and various points along the outlet pipeline using collimated scintillation detector. The peak to peak and total count methods were applied for radiotracer techniques and showed the comparable results with conventional flow meter.
  2. Yunos MA, Hussain SA, Yusoff HM, Abdullah J
    Appl Radiat Isot, 2014 Sep;91:57-61.
    PMID: 24907683 DOI: 10.1016/j.apradiso.2014.05.015
    Radioactive particle tracking (RPT) has emerged as a promising and versatile technique that can provide rich information about a variety of multiphase flow systems. However, RPT is not an off-the-shelf technique, and thus, users must customize RPT for their applications. This paper presents a simple procedure for preparing radioactive tracer particles created via irradiation with neutrons from the TRIGA Mark II research reactor. The present study focuses on the performance evaluation of encapsulated gold and scandium particles for applications as individual radioactive tracer particles using qualitative and quantitative neutron activation analysis (NAA) and an X-ray microcomputed tomography (X-ray Micro-CT) scanner installed at the Malaysian Nuclear Agency.
  3. Mohd Yunos MAS, Hussain SA, Sipaun SM
    Appl Radiat Isot, 2019 Jan;143:24-28.
    PMID: 30368049 DOI: 10.1016/j.apradiso.2018.10.008
    The flow rate or fluid velocity measurement is important to maintain fluid flow quality performance in the systems. This study focuses on determination of volumetric flow rate measurement and to calibrate the conventional flowmeter using industrial radiotracer approach in quadrilateral gas-liquid bubble column reactor. In this work, two different radioisotopes which emit γ-ray have been chosen as radioactive tracer which is 99mTc produced from 99Mo/99mTc radioisotope generator and 198Au nanoparticle form neutron activation at research nuclear reactor TRIGA Mark II. Both radioisotopes representing liquid and solid tracer purposely designed for tracing liquid flow. The peak to peak radiotracer method known as pulse velocity method was applied to determine the volumetric flow rate. The radiation signals were monitored using 4 unit NaI scintillation detectors located at 4 different points nearby the inlet and outlet of the quadrilateral bubble column reactor process stream. The water volume inside the bubble column reactor was fixed at 0.04 m3 and liquid flow rates in this reactor were specified on installed flowmeter at different reference value which is 4 lpm, 8 lpm, and 12 lpm, respectively. The experimental result shows very good linearity and repeatability by following the theoretical equations with less uncertainty in volumetric flow rate measurement. The obtained results also validated the effectiveness of the proposed method for the installed flowmeter calibration efficiency.
  4. Mohd Amirul Syafiq Mohd Yunos, Zainal Abidin Talib, Wan Mahmood Mat Yunus, Liew, Josephine Ying Chyi, Paulus, Wilfred Sylvester
    MyJurnal
    Semiconductor thin films Copper Tin Selenide, Cu2SnSe3, a potential compound for solar cell applications or semiconductor radiation detector were prepared by thermal evaporation method onto well-cleaned glass substrates. The as-deposited films were annealed in flowing purified nitrogen N2, for 2 hours in a temperature range from 100˚C to 500˚C. The structure of as-deposited and annealed films has been studied by X-ray diffraction technique. The semi-quantitative analysis indicated from Reitveld refinement show that the samples composed of Cu2SnSe3 and SnSe. These studies revealed that the films were structured in mixed phase between cubic space group F-43m (no. 216) and orthorhombic space group P n m a (no. 62). The crystallite size and lattice strain were determined from Scherrer calculation method. The results show that increasing in annealing temperature resulted in direct increase in crystallite size and decrease in lattice strain.
  5. Noraishah Othman, Nor Pa’iza Mohamad Hasan, Nazrul Hizam Yusoff, Mohd Amirul Syafiq Mohd Yunos, Engku Mohd Fahmi Engku Chik
    MyJurnal
    Radiotracer technology is a technique of radioactive injection into the systemand the detection is done using radiationdetector.It is alsoa tool for investigating and solving plant process problems namely process malfunctions andmechanical damages. Radiotracer is the most preferred stimulus response techniques in the industries due to its non-invasive application and on line monitoring capabilities, which avoid shut down of the plant. Radiotracer techniques have many advantages, such as high detection sensitivity, in-situ detection, availability of a wide range of compatible radiotracers for different phases, rapid response and high reliability and accuracy of the results. The residence time distribution (RTD) is one of the important parameters that can provide information on the characteristics or hydrodynamics of the nuclear reactor. In this paper, the overall review is presented in brief regarding radiotracer technology in plant operation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links