Microalgae cultivation is well known as a sustainable method for eco-friendly wastewater phycoremediation and valuable biomass production. This study investigates the feasibility and kinetic removal of organic compounds and nutrients from food processing wastewater (FPW) using Botryococcus sp. in an enclosed photobioreactor. Simultaneously, response surface methodology (RSM) via face-centered central composite design (FCCCD) was applied to optimize the effects of alum and chitosan dosage and pH sensitivity on flocculation efficiency. The maximum growth rate of Botryococcus sp. cultivated in FPW was 1.83 mg day-1with the highest removal of chemical oxygen demand (COD), total organic carbon (TOC), and total phosphorus (TP) after 12 days of phycoremediation of 96.1%, 87.2%, and 35.4%, respectively. A second-order polynomial function fits well with the experimental results. Both coagulant dosage and pH significantly (p