Displaying all 3 publications

Abstract:
Sort:
  1. Razali MR, Mohd Faudzi AA, Shamsudin AU, Mohamaddan S
    Front Robot AI, 2022;9:1087371.
    PMID: 36714801 DOI: 10.3389/frobt.2022.1087371
    Due to the complexity of autonomous mobile robot's requirement and drastic technological changes, the safe and efficient path tracking development is becoming complex and requires intensive knowledge and information, thus the demand for advanced algorithm has rapidly increased. Analyzing unstructured gain data has been a growing interest among researchers, resulting in valuable information in many fields such as path planning and motion control. Among those, motion control is a vital part of a fast, secure operation. Yet, current approaches face problems in managing unstructured gain data and producing accurate local planning due to the lack of formulation in the knowledge on the gain optimization. Therefore, this research aims to design a new gain optimization approach to assist researcher in identifying the value of the gain's product with a qualitative comparative study of the up-to-date controllers. Gains optimization in this context is to classify the near perfect value of the gain's product and processes. For this, a domain controller will be developed based on the attributes of the Fuzzy-PID parameters. The development of the Fuzzy Logic Controller requires information on the PID controller parameters that will be fuzzified and defuzzied based on the resulting 49 fuzzy rules. Furthermore, this fuzzy inference will be optimized for its usability by a genetic algorithm (GA). It is expected that the domain controller will give a positive impact to the path planning position and angular PID controller algorithm that meet the autonomous demand.
  2. Singh OP, Vallejo M, El-Badawy IM, Aysha A, Madhanagopal J, Mohd Faudzi AA
    Comput Biol Med, 2021 Sep;136:104650.
    PMID: 34329865 DOI: 10.1016/j.compbiomed.2021.104650
    Due to the continued evolution of the SARS-CoV-2 pandemic, researchers worldwide are working to mitigate, suppress its spread, and better understand it by deploying digital signal processing (DSP) and machine learning approaches. This study presents an alignment-free approach to classify the SARS-CoV-2 using complementary DNA, which is DNA synthesized from the single-stranded RNA virus. Herein, a total of 1582 samples, with different lengths of genome sequences from different regions, were collected from various data sources and divided into a SARS-CoV-2 and a non-SARS-CoV-2 group. We extracted eight biomarkers based on three-base periodicity, using DSP techniques, and ranked those based on a filter-based feature selection. The ranked biomarkers were fed into k-nearest neighbor, support vector machines, decision trees, and random forest classifiers for the classification of SARS-CoV-2 from other coronaviruses. The training dataset was used to test the performance of the classifiers based on accuracy and F-measure via 10-fold cross-validation. Kappa-scores were estimated to check the influence of unbalanced data. Further, 10 × 10 cross-validation paired t-test was utilized to test the best model with unseen data. Random forest was elected as the best model, differentiating the SARS-CoV-2 coronavirus from other coronaviruses and a control a group with an accuracy of 97.4 %, sensitivity of 96.2 %, and specificity of 98.2 %, when tested with unseen samples. Moreover, the proposed algorithm was computationally efficient, taking only 0.31 s to compute the genome biomarkers, outperforming previous studies.
  3. Zainulabid UA, Kamarudin N, Zulkifly AH, Gan HM, Tay DD, Siew SW, et al.
    Microbiol Resour Announc, 2021 Aug 05;10(31):e0065721.
    PMID: 34351228 DOI: 10.1128/MRA.00657-21
    Here, we report the nearly complete genome sequences of nine severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with the D614G mutation. These viruses were detected from various infected individuals with different levels of severity from Pahang, Malaysia. In addition, this study described the presence of lineage B.1.351 as a type of variant of concern (VOC) and lineages B.1.466.2 and B.1.524 as local variants.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links