Resource bound security solutions have facilitated the mitigation of spatio-temporal attacks by altering protocol semantics to provide minimal security while maintaining an acceptable level of performance. The Dynamic Window Secured Implicit Geographic Forwarding (DWSIGF) routing protocol for Wireless Sensor Network (WSN) has been proposed to achieve a minimal selection of malicious nodes by introducing a dynamic collection window period to the protocol's semantics. However, its selection scheme suffers substantial packet losses due to the utilization of a single distance based parameter for node selection. In this paper, we propose a Fuzzy-based Geographic Forwarding protocol (FuGeF) to minimize packet loss, while maintaining performance. The FuGeF utilizes a new form of dynamism and introduces three selection parameters: remaining energy, connectivity cost, and progressive distance, as well as a Fuzzy Logic System (FLS) for node selection. These introduced mechanisms ensure the appropriate selection of a non-malicious node. Extensive simulation experiments have been conducted to evaluate the performance of the proposed FuGeF protocol as compared to DWSIGF variants. The simulation results show that the proposed FuGeF outperforms the two DWSIGF variants (DWSIGF-P and DWSIGF-R) in terms of packet delivery.
Wireless sensor networks (WSN) have been among the most prevalent wireless innovations over the years exciting new Internet of Things (IoT) applications. IoT based WSN integrated with Internet Protocol IP allows any physical objects with sensors to be connected ubiquitously and send real-time data to the server connected to the Internet gate. Security in WSN remains an ongoing research trend that falls under the IoT paradigm. A WSN node deployed in a hostile environment is likely to open security attacks such as Sybil attack due to its distributed architecture and network contention implemented in the routing protocol. In a Sybil attack, an adversary illegally advertises several false identities or a single identity that may occur at several locations called Sybil nodes. Therefore, in this paper, we give a survey of the most up-to-date assured methods to defend from the Sybil attack. The Sybil attack countermeasures includes encryption, trust, received signal indicator (RSSI), encryption and artificial intelligence. Specifically, we survey different methods, along with their advantages and disadvantages, to mitigate the Sybil attack. We discussed the lesson learned and the future avenues of study and open issues in WSN security analysis.