Displaying all 2 publications

Abstract:
Sort:
  1. Mohd Rafi Mohd Solleh, Abd. Aziz Tajuddin, Eid Mahmoud Eid Abdel Munem, Abdul Aziz Mohamed, Mohamad Hairie Rabir, Julia Abd. Karim, et al.
    MyJurnal
    The geometry of reactor core, thermal column, collimator and shielding system for BNCT application of TRIGA MARK II REACTOR were simulated with MCNP5 code. Neutron particle lethargy and dose were calculated with MCNPX code. Neutron flux in a sample located at the end of collimator after normalized to measured value (Eid Mahmoud Eid Abdel Munem, 2007) at 1 MW power was 1.06E8 n/cm2/s. According to IAEA (2001) flux of 1.00E9 n/cm2/s requires three hours of treatment. Few modifications were needed to get higher flux.
  2. Mohd Rafi Mohd Solleh, Abdul Aziz Mohamed, Abd. Aziz Tajuddin, Faridah Idris, Mohamad Hairie Rabir, Muhammad Rawi Md Zin, et al.
    MyJurnal
    Thermal neutron beam from thermal column was selected for a Boron Neutron Capture Therapy
    (BNCT) system utilizing the Malaysian TRIGA MARK II reactor. Determination of shielding
    materials for fast and epithermal neutron was conducted. The materials selected were polyethylene,
    paraffin and water. For gamma-ray shielding, lead was used. The objective of this paper is to present
    the simulation and verification of an optimal design of BNCT collimation at a beam. line viewing the
    thermal column. A collimator was made from polyethylene pipe with 8 cm of diameter filled with
    paraffin.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links