Displaying all 4 publications

Abstract:
Sort:
  1. Wan Jusoh WN, Matori KA, Mohd Zaid MH, Zainuddin N, Ahmad Khiri MZ, Abdul Rahman NA, et al.
    Materials (Basel), 2021 Feb 18;14(4).
    PMID: 33670465 DOI: 10.3390/ma14040954
    Glass ionomer cement (GIC) is a well-known restorative material applied in dentistry. The present work aims to study the effect of hydroxyapatite (HA) addition into GIC based on physical, mechanical and structural properties. The utilization of waste materials namely clam shell (CS) and soda lime silica (SLS) glass as replacements for the respective CaO and SiO2 sources in the fabrication of alumino-silicate-fluoride (ASF) glass ceramics powder. GIC was formulated based on ASF glass ceramics, polyacrylic acid (PAA) and deionized water, while 1 wt.% of HA powder was added to enhance the properties of the cement samples. The cement samples were subjected to four different ageing times before being analyzed. In this study, the addition of HA caused an increment in density and compressive strength results along with ageing time. Besides, X-ray Diffraction (XRD) revealed the formation of fluorohydroxyapatite (FHA) phase in HA-added GIC samples and it was confirmed by Fourier Transform Infrared (FTIR) analysis which detected OH‒F vibration mode. In addition, needle-like and agglomeration of spherical shapes owned by apatite crystals were observed from Field Emission Scanning Electron Microscopy (FESEM). Based on Energy Dispersive X-ray (EDX) analysis, the detection of chemical elements in the cement samples were originated from chemical compounds used in the preparation of glass ceramics powder and also the polyacid utilized in initiating the reaction of GIC.
  2. Anuar MF, Fen YW, Azizan MZ, Rahmat F, Mohd Zaid MH, Khaidir REM, et al.
    Materials (Basel), 2021 Feb 28;14(5).
    PMID: 33670923 DOI: 10.3390/ma14051141
    Arecanut husk (AH) was selected as a material for silica replacement in the synthesis process of glass-ceramics zinc silicate and also the fact that it has no traditional use and often being dumped and results in environmental issues. The process of pyrolysis was carried out at temperature 700 °C and above based on thermogravimetric analysis to produce arecanut husk ash (AHA). The average purity of the silica content in AHA ranged from 29.17% to 45.43%. Furthermore, zinc oxide was introduced to AHA and zinc silicate started to form at sintering temperature 700 °C and showed increased diffraction intensity upon higher sintering temperature of 600 °C to 1000 °C based on X-ray diffraction (XRD) analysis. The grain sizes of the zinc silicate increased from 1011 nm to 3518 nm based on the morphological studies carried out by field emission scanning electron microscopy (FESEM). In addition, the optical band gap of the sample was measured to be in the range from 2.410 eV to 2.697 eV after sintering temperature. From the data, it is believed that a cleaner production of low-cost zinc silicate can be achieved by using arecanut husk and have the potential to be used as phosphors materials.
  3. Loh ZW, Mohd Zaid MH, Matori KA, Kechik MMA, Fen YW, Mayzan MZH, et al.
    J Mech Behav Biomed Mater, 2023 Jul;143:105889.
    PMID: 37150138 DOI: 10.1016/j.jmbbm.2023.105889
    This work investigates the role of sintering temperature on bioactive glass-ceramics derived from the new composition CaO-P2O5-Na2O-B2O3-SiO2 glass system. The sintering behaviour of the samples' physical, structural, and mechanical properties is highlighted in this study. The experimental results indicated that the sintering process improved the crystallization and hardness of the final product. Results from XRD and FTIR showed the existence of carbonate apatite, pseudo-wollastonite, and wollastonite phases. From the results, the bioglass-ceramics sintered at 700 °C obtained the highest densification and optimum mechanical results. It had the value of 5.34 ± 0.21 GPa regarding microhardness and 2.99 ± 0.24 MPa m1/2 concerning fracture toughness, which falls in the range of the human enamel. Also, the sintered samples maintained their bioactivity and biodegradability after being tested in the PBS medium. The bioactivity does not affect but slows down the apatite formation rate. Overall results promoted the novel bioglass-ceramics as a candidate material for dental application.
  4. Shaifudin MS, Ghazali MSM, Kamaruzzaman WMIWM, Wan Abdullah WR, Kassim S, Ismail NQA, et al.
    Materials (Basel), 2021 Feb 03;14(4).
    PMID: 33546094 DOI: 10.3390/ma14040702
    This paper investigated the effects of Pr6O11 and Co3O4 on the electrical properties of ZnO-BaTiO3 varistor ceramics. The Pr6O11 doping has a notable influence on the characteristics of the nonlinear coefficient, varistor voltage, and leakage current where the values varied from 2.29 to 2.69, 12.36 to 68.36 V/mm and 599.33 to 548.16 µA/cm2, respectively. The nonlinear varistor coefficient of 5.50 to 7.15 and the varistor voltage of 7.38 to 8.10 V/mm was also influenced by the use of Co3O4 as a dopant. When the amount of Co3O4 was above 0.5 wt.%, the leakage current increased from 202.41 to 302.71 μA/cm2. The varistor ceramics with 1.5 wt.% Pr6O11 shows good nonlinear electrical performance at higher breakdown voltage and reduced the leakage current of the ceramic materials. Besides, the varistor sample that was doped with 0.5 wt.% Co3O4 was able to enhance the nonlinear electrical properties at low breakdown voltage with a smaller value of leakage current.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links