Displaying all 2 publications

Abstract:
Sort:
  1. Hussein M, Yoneda K, Mohd-Zaki Z, Amir A, Othman N
    Chemosphere, 2021 Mar;267:128874.
    PMID: 33199110 DOI: 10.1016/j.chemosphere.2020.128874
    Landfills are a potential threat to human health and the environment, especially from the detrimental and toxic heavy metals. This study focuses on the assessment of heavy metals contamination in leachate and surface soils from different landfills in Malaysia. Maximum quality rating scale (QRS) values of As (787) and Cr (552) denotes progressive deterioration of leachate contamination in landfill. The impacted soils showed high heavy metal concentrations especially at non-sanitary unlined landfills, as compared to background values, and natural soil nearby the landfills. In addition, to examine the environmental impacts of the landfill area (soil) in more detail, specific indexes; geo-accumulation index (Igeo), pollution index (PI) and integrated pollution index (IPI) were determined. Maximum As (3.122) and Cd (2.633) for Igeo and As (34.037) and Cd (20.881) for PI revealed that the soil samples in non-sanitary landfills were moderate to strongly polluted. The difference in range of IPI values for sanitary (0.294-0.322) and non-sanitary landfill soils (1.263-1.956) confirmed advanced decline of the soil quality in non-sanitary landfills. Arsenic concentrations were found to be statistically significant (ANOVA) for leachate and impacted soil in landfills investigated. It is also important to realize that rise in metal contents in landfill environments were not only caused by anthropogenic sources such as from the waste disposed, but also some other factors such as redox conditions, anoxic environments, pH, oxidation state of metals and microbial activities. Those conditions will actively promotes leaching of metals from waste and also natural soils in the landfill.
  2. Mohd-Zaki Z, Bastidas-Oyanedel JR, Lu Y, Hoelzle R, Pratt S, Slater FR, et al.
    Microorganisms, 2016;4(1).
    PMID: 27681895 DOI: 10.3390/microorganisms4010002
    Mixed culture anaerobic fermentation generates a wide range of products from simple sugars, and is potentially an effective process for producing renewable commodity chemicals. However it is difficult to predict product spectrum, and to control the process. One of the key control handles is pH, but the response is commonly dependent on culture history. In this work, we assess the impact of pH regulation mode on the product spectrum. Two regulation modes were applied: in the first, pH was adjusted from 4.5 to 8.5 in progressive steps of 0.5 and in the second, covered the same pH range, but the pH was reset to 5.5 before each change. Acetate, butyrate, and ethanol were produced throughout all pH ranges, but there was a shift from butyrate at pH < 6.5 to ethanol at pH > 6.5, as well as a strong and consistent shift from hydrogen to formate as pH increased. Microbial analysis indicated that progressive pH resulted in dominance by Klebsiella, while reset pH resulted in a bias towards Clostridium spp., particularly at low pH, with higher variance in community between different pH levels. Reset pH was more responsive to changes in pH, and analysis of Gibbs free energy indicated that the reset pH experiments operated closer to thermodynamic equilibrium, particularly with respect to the formate/hydrogen balance. This may indicate that periodically resetting pH conforms better to thermodynamic expectations.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links