Displaying all 3 publications

Abstract:
Sort:
  1. Zakaria N, Ruzmi R, Moosa S, Asib N, Zulperi D, Ismail SI, et al.
    Physiol Mol Biol Plants, 2021 May;27(5):969-983.
    PMID: 34108823 DOI: 10.1007/s12298-021-00987-3
    Limnocharis flava (L.) Buchenau is a problematic weed in rice fields and water canals of Southeast Asia, and in Malaysia this invasive aquatic weed species has evolved multiple resistance to synthetic auxin herbicide and acetohydroxyacid synthase (AHAS) inhibitors. In this study, it was revealed that, a single nucleotide polymorphism (SNP) at amino acid position 376, where C was substituted to G at the third base of the same codon (GAC to GAG), resulting in Aspartate (Asp) substitution by Glutamate (Glu) was the contributing resistance mechanism in the L. flava population to AHAS inhibitors. In vitro assay further proved that, all the L. flava individuals carrying AHAS resistance mutation exhibited decreased-sensitivity to AHAS inhibitors at the enzyme level. In the bensulfuron-methyl whole-plant bioassay, high resistance indices (RI) of 328- and 437-fold were recorded in the absence and presence of malathion (the P450 inhibitor), respectively. Similarly, translocation and absorption of bensulfuron-methyl in both resistant and susceptible L. flava populations showed no remarkable differences, hence eliminated the possible co-existence of non-target-site resistance mechanism in the resistant L. flava. This study has confirmed another new case of a target-site resistant weed species to AHAS-inhibitors.
  2. Lesmann H, Hustinx A, Moosa S, Klinkhammer H, Marchi E, Caro P, et al.
    Res Sq, 2024 Jun 10.
    PMID: 38903062 DOI: 10.21203/rs.3.rs-4438861/v1
    The most important factor that complicates the work of dysmorphologists is the significant phenotypic variability of the human face. Next-Generation Phenotyping (NGP) tools that assist clinicians with recognizing characteristic syndromic patterns are particularly challenged when confronted with patients from populations different from their training data. To that end, we systematically analyzed the impact of genetic ancestry on facial dysmorphism. For that purpose, we established the GestaltMatcher Database (GMDB) as a reference dataset for medical images of patients with rare genetic disorders from around the world. We collected 10,980 frontal facial images - more than a quarter previously unpublished - from 8,346 patients, representing 581 rare disorders. Although the predominant ancestry is still European (67%), data from underrepresented populations have been increased considerably via global collaborations (19% Asian and 7% African). This includes previously unpublished reports for more than 40% of the African patients. The NGP analysis on this diverse dataset revealed characteristic performance differences depending on the composition of training and test sets corresponding to genetic relatedness. For clinical use of NGP, incorporating non-European patients resulted in a profound enhancement of GestaltMatcher performance. The top-5 accuracy rate increased by +11.29%. Importantly, this improvement in delineating the correct disorder from a facial portrait was achieved without decreasing the performance on European patients. By design, GMDB complies with the FAIR principles by rendering the curated medical data findable, accessible, interoperable, and reusable. This means GMDB can also serve as data for training and benchmarking. In summary, our study on facial dysmorphism on a global sample revealed a considerable cross ancestral phenotypic variability confounding NGP that should be counteracted by international efforts for increasing data diversity. GMDB will serve as a vital reference database for clinicians and a transparent training set for advancing NGP technology.
  3. Lesmann H, Hustinx A, Moosa S, Klinkhammer H, Marchi E, Caro P, et al.
    medRxiv, 2024 May 21.
    PMID: 37503210 DOI: 10.1101/2023.06.06.23290887
    The most important factor that complicates the work of dysmorphologists is the significant phenotypic variability of the human face. Next-Generation Phenotyping (NGP) tools that assist clinicians with recognizing characteristic syndromic patterns are particularly challenged when confronted with patients from populations different from their training data. To that end, we systematically analyzed the impact of genetic ancestry on facial dysmorphism. For that purpose, we established the GestaltMatcher Database (GMDB) as a reference dataset for medical images of patients with rare genetic disorders from around the world. We collected 10,980 frontal facial images - more than a quarter previously unpublished - from 8,346 patients, representing 581 rare disorders. Although the predominant ancestry is still European (67%), data from underrepresented populations have been increased considerably via global collaborations (19% Asian and 7% African). This includes previously unpublished reports for more than 40% of the African patients. The NGP analysis on this diverse dataset revealed characteristic performance differences depending on the composition of training and test sets corresponding to genetic relatedness. For clinical use of NGP, incorporating non-European patients resulted in a profound enhancement of GestaltMatcher performance. The top-5 accuracy rate increased by +11.29%. Importantly, this improvement in delineating the correct disorder from a facial portrait was achieved without decreasing the performance on European patients. By design, GMDB complies with the FAIR principles by rendering the curated medical data findable, accessible, interoperable, and reusable. This means GMDB can also serve as data for training and benchmarking. In summary, our study on facial dysmorphism on a global sample revealed a considerable cross ancestral phenotypic variability confounding NGP that should be counteracted by international efforts for increasing data diversity. GMDB will serve as a vital reference database for clinicians and a transparent training set for advancing NGP technology.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links