Displaying all 3 publications

Abstract:
Sort:
  1. Tisserand R, van der Ent A, Nkrumah PN, Didier S, Sumail S, Morel JL, et al.
    Sci Total Environ, 2024 Apr 01;919:170691.
    PMID: 38325468 DOI: 10.1016/j.scitotenv.2024.170691
    Nickel hyperaccumulator plants play a major role in nickel recycling in ultramafic ecosystems, and under agromining the nickel dynamics in the farming system will be affected by removal of nickel-rich biomass. We investigated the biogeochemical cycling of nickel as well as key nutrients in an agromining operation that uses the metal crop Phyllanthus rufuschaneyi in the first tropical metal farm located in Borneo (Sabah, Malaysia). For two years, this study monitored nine 25-m2 plots and collected information on weather, biomass exportation, water, and litter fluxes to the soil. Without harvesting, nickel inputs and outputs had only minor contributions (<1 %) to the total nickel budget in this system. The nickel cycle was mainly driven by internal fluxes, particularly plant uptake, litterfall and throughfall. After two years of cropping, the nickel litter flux corresponded to 50 % of the total nickel stock in the aerial biomass (3.1 g m-2 year-1). Nickel was slowly released from the litter; after 15 months of degradation, 60 % of the initial biomass and the initial nickel quantities were still present in the organic layer. Calcium, phosphorus and potassium budgets in the system were negative without fertilisation. Unlike what is observed for nickel, sustained agromining would thus lead to a strong depletion of calcium stocks if mineral weathering cannot replenish it.
  2. Lopez S, van der Ent A, Sumail S, Sugau JB, Buang MM, Amin Z, et al.
    Environ Microbiol, 2020 04;22(4):1649-1665.
    PMID: 32128926 DOI: 10.1111/1462-2920.14970
    The Island of Borneo is a major biodiversity hotspot, and in the Malaysian state of Sabah, ultramafic soils are extensive and home to more than 31 endemic nickel hyperaccumulator plants. The aim of this study was to characterize the structure and the diversity of the rhizosphere bacterial communities of several of these nickel hyperaccumulator plants and factors that affect these bacterial communities in Sabah. The most abundant phyla were Proteobacteria, Acidobacteria and Actinobacteria. At family level, Burkholderiaceae and Xanthobacteraceae (Proteobacteria phylum) were the most abundant families in the hyperaccumulator rhizospheres. Redundancy analysis based on soil chemical analyses and relative abundances of the major bacterial phyla showed that abiotic factors of the studied sites drove the bacterial diversity. For all R. aff. bengalensis rhizosphere soil samples, irrespective of studied site, the bacterial diversity was similar. Moreover, the Saprospiraceae family showed a high representativeness in the R. aff. bengalensis rhizosphere soils and was linked with the nickel availability in soils. The ability of R. aff. bengalensis to concentrate nickel in its rhizosphere appears to be the major factor driving the rhizobacterial community diversity unlike for other hyperaccumulator species.
  3. Geng K, Sun S, Huang Z, Huang C, Wu C, Deng T, et al.
    Sheng Wu Gong Cheng Xue Bao, 2020 Mar 25;36(3):436-449.
    PMID: 32237538 DOI: 10.13345/j.cjb.200023
    Phytomining technology cultivates hyperaccumulator plants on heavy metal contaminated soils, followed by biomass harvesting and incineration to recover valuable metals, offering an opportunity for resource recycling and soil remediation. Large areas of ultramafic soils, naturally rich in nickel (Ni), are present in numerous places around the world. As an environmentally friendly and cost-effective soil remediation technology, phytomining has a broad application prospect in such areas and thus has attracted great attention from global researchers. The key processes of phytomining include: (1) high-selectivity response of hyperaccumulator plants to Ni the underlying mechanisms involved in the rhizosphere; (2) underlying mechanisms of high-efficiency uptake and translocation of Ni in hyperaccumulators; and (3) resource recycling of high-added value Ni products from the Ni-rich bio-ore of hyperaccumulators. In recent 30 years, phytomining practices have successfully carried out in United States, Albania and Malaysia. However, the research and application of this technology in China are still in the fledging stage. This paper reviews the key processes and research progress of phytomining, and points out the bottleneck, to provide theoretical basis and technical guidance for phytomining.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links