METHODS: Hematological (511 examinations of 280 Japanese macaques) and blood chemistry data (between 33 and 284 examinations from between 29 and 257 individual macaques) in clinically healthy, simian retrovirus-free Japanese macaques tested between 2009 and 2013 were reviewed.
RESULTS AND CONCLUSIONS: Specific hematological and blood chemistry data for Japanese macaques without clinical signs of disease were provided in this study. Averages presented can be used as hematological parameters for Japanese macaques. Some differences between Japanese macaques and other closely related macaque species were found. Some parameters varied according to macaque age and sex, as well as regional origin. The data in this study will provide useful clinical indices for Japanese macaques in captive and similar conditions.
METHODS: In this study, we assessed the potential anti-inflammatory effects of human umbilical cord mesenchymal stem cell (hUC-MSC)-derived EVs in a rat model of COPD. EVs were isolated from hUC-MSCs and characterized by the transmission electron microscope, western blotting, and nanoparticle tracking analysis. As a model of COPD, male Sprague-Dawley rats were exposed to cigarette smoke for up to 12 weeks, followed by transplantation of hUC-MSCs or application of hUC-MSC-derived EVs. Lung tissue was subjected to histological analysis using haematoxylin and eosin staining, Alcian blue-periodic acid-Schiff (AB-PAS) staining, and immunofluorescence staining. Gene expression in the lung tissue was assessed using microarray analysis. Statistical analyses were performed using GraphPad Prism 7 version 7.0 (GraphPad Software, USA). Student's t test was used to compare between 2 groups. Comparison among more than 2 groups was done using one-way analysis of variance (ANOVA). Data presented as median ± standard deviation (SD).
RESULTS: Both transplantation of hUC-MSCs and application of EVs resulted in a reduction of peribronchial and perivascular inflammation, alveolar septal thickening associated with mononuclear inflammation, and a decreased number of goblet cells. Moreover, hUC-MSCs and EVs ameliorated the loss of alveolar septa in the emphysematous lung of COPD rats and reduced the levels of NF-κB subunit p65 in the tissue. Subsequent microarray analysis revealed that both hUC-MSCs and EVs significantly regulate multiple pathways known to be associated with COPD.
CONCLUSIONS: In conclusion, we show that hUC-MSC-derived EVs effectively ameliorate by COPD-induced inflammation. Thus, EVs could serve as a new cell-free-based therapy for the treatment of COPD.
METHODS: Patients with CBHA in 176 families were genetically examined using exome sequencing. Patients with disease-causing variants were clinically evaluated.
RESULTS: Disease-causing variants were identified in 96 of the 176 families (54.5%). After excluding 6 families, 48 patients from 42 families were categorized as having syndromic associations with CBHA, whereas the remaining 51 patients from 48 families had isolated CBHA. In 51 patients, 26 aberrant genes were identified, of which, 20 (76.9%) caused disease in 1 family each. The most prevalent genes were CACNA1A, ITPR1, and KIF1A. Of the 26 aberrant genes, 21 and 1 were functionally annotated to atrophy and hypoplasia, respectively. CBHA+S was more clinically severe than CBHA-S. Notably, ARG1 and FOLR1 variants were identified in 2 families, leading to medical treatments.
CONCLUSION: A wide genetic and clinical diversity of CBHA was revealed through exome sequencing in this cohort, which highlights the importance of comprehensive genetic analyses. Furthermore, molecular-based treatment was available for 2 families.