Displaying all 14 publications

Abstract:
Sort:
  1. Lan YW, Choo KB, Chen CM, Hung TH, Chen YB, Hsieh CH, et al.
    Stem Cell Res Ther, 2015;6:97.
    PMID: 25986930 DOI: 10.1186/s13287-015-0081-6
    Idiopathic pulmonary fibrosis is a progressive diffuse parenchymal lung disorder of unknown etiology. Mesenchymal stem cell (MSC)-based therapy is a novel approach with great therapeutic potential for the treatment of lung diseases. Despite demonstration of MSC grafting, the populations of engrafted MSCs have been shown to decrease dramatically 24 hours post-transplantation due to exposure to harsh microenvironments. Hypoxia is known to induce expression of cytoprotective genes and also secretion of anti-inflammatory, anti-apoptotic and anti-fibrotic factors. Hypoxic preconditioning is thought to enhance the therapeutic potency and duration of survival of engrafted MSCs. In this work, we aimed to prolong the duration of survival of engrafted MSCs and to enhance the effectiveness of idiopathic pulmonary fibrosis transplantation therapy by the use of hypoxia-preconditioned MSCs.
  2. Lan YW, Yang JC, Yen CC, Huang TT, Chen YC, Chen HL, et al.
    Stem Cell Res Ther, 2019 06 13;10(1):163.
    PMID: 31196196 DOI: 10.1186/s13287-019-1282-1
    INTRODUCTION: Pulmonary emphysema is a major component of chronic obstructive pulmonary disease (COPD). Emphysema progression attributed not only to alveolar structure loss and pulmonary regeneration impairment, but also to excessive inflammatory response, proteolytic and anti-proteolytic activity imbalance, lung epithelial cells apoptosis, and abnormal lung remodeling. To ameliorate lung damage with higher efficiency in lung tissue engineering and cell therapy, pre-differentiating graft cells into more restricted cell types before transplantation could enhance their ability to anatomically and functionally integrate into damaged lung. In this study, we aimed to evaluate the regenerative and repair ability of lung alveolar epithelium in emphysema model by using lung epithelial progenitors which pre-differentiated from amniotic fluid mesenchymal stem cells (AFMSCs).

    METHODS: Pre-differentiation of eGFP-expressing AFMSCs to lung epithelial progenitor-like cells (LEPLCs) was established under a modified small airway growth media (mSAGM) for 7-day induction. Pre-differentiated AFMSCs were intratracheally injected into porcine pancreatic elastase (PPE)-induced emphysema mice at day 14, and then inflammatory-, fibrotic-, and emphysema-related indices and pathological changes were assessed at 6 weeks after PPE administration.

    RESULTS: An optimal LEPLCs pre-differentiation condition has been achieved, which resulted in a yield of approximately 20% lung epithelial progenitors-like cells from AFMSCs in a 7-day period. In PPE-induced emphysema mice, transplantation of LEPLCs significantly improved regeneration of lung tissues through integrating into the lung alveolar structure, relieved airway inflammation, increased expression of growth factors such as vascular endothelial growth factor (VEGF), and reduced matrix metalloproteinases and lung remodeling factors when compared with mice injected with AFMSCs. Histopathologic examination observed a significant amelioration in DNA damage in alveolar cells, detected by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL), the mean linear intercept, and the collagen deposition in the LEPLC-transplanted groups.

    CONCLUSION: Transplantation of predifferentiated AFMSCs through intratracheal injection showed better alveolar regeneration and reverse elastase-induced pulmonary emphysema in PPE-induced pulmonary emphysema mice.

  3. Hu L, Wang Y, Pan H, Kadir K, Wen J, Li S, et al.
    Stem Cell Res Ther, 2021 03 16;12(1):185.
    PMID: 33726822 DOI: 10.1186/s13287-021-02253-5
    OBJECTIVES: This study aims to investigate whether apoptosis repressor with caspase recruitment domain (ARC) could promote survival and enhance osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs).

    MATERIALS AND METHODS: The lentivirus transfection method was used to establish ARC-overexpressing BMSCs. The CCK-8 method was used to detect cell proliferation. The BD Pharmingen™ APC Annexin V Apoptosis Detection kit was used to detect cell apoptosis. The osteogenic capacity was investigated by OCN immunofluorescence staining, ALP analysis, ARS assays, and RT-PCR analysis. Cells were seeded into calcium phosphate cement (CPC) scaffolds and then inserted subcutaneously into nude mice and the defect area of the rat calvarium. Histological analysis was conducted to evaluate the in vivo cell apoptosis and new bone formation of the ARC-overexpressing BMSCs. RNA-seq was used to detect the possible mechanism of the effect of ARC on BMSCs.

    RESULTS: ARC promoted BMSC proliferation and inhibited cell apoptosis. ARC enhanced BMSC osteogenic differentiation in vitro. An in vivo study revealed that ARC can inhibit BMSC apoptosis and increase new bone formation. ARC regulates BMSCs mainly by activating the Fgf-2/PI3K/Akt pathway.

    CONCLUSIONS: The present study suggests that ARC is a powerful agent for promoting bone regeneration of BMSCs and provides a promising method for bone tissue engineering.

  4. Sriram S, Kang NY, Subramanian S, Nandi T, Sudhagar S, Xing Q, et al.
    Stem Cell Res Ther, 2021 02 05;12(1):113.
    PMID: 33546754 DOI: 10.1186/s13287-021-02171-6
    BACKGROUND: Despite recent rapid progress in method development and biological understanding of induced pluripotent stem (iPS) cells, there has been a relative shortage of tools that monitor the early reprogramming process into human iPS cells.

    METHODS: We screened the in-house built fluorescent library compounds that specifically bind human iPS cells. After tertiary screening, the selected probe was analyzed for its ability to detect reprogramming cells in the time-dependent manner using high-content imaging analysis. The probe was compared with conventional dyes in different reprogramming methods, cell types, and cell culture conditions. Cell sorting was performed with the fluorescent probe to analyze the early reprogramming cells for their pluripotent characteristics and genome-wide gene expression signatures by RNA-seq. Finally, the candidate reprogramming factor identified was investigated for its ability to modulate reprogramming efficiency.

    RESULTS: We identified a novel BODIPY-derived fluorescent probe, BDL-E5, which detects live human iPS cells at the early reprogramming stage. BDL-E5 can recognize authentic reprogramming cells around 7 days before iPS colonies are formed and stained positive with conventional pluripotent markers. Cell sorting of reprogrammed cells with BDL-E5 allowed generation of an increased number and higher quality of iPS cells. RNA sequencing analysis of BDL-E5-positive versus negative cells revealed early reprogramming patterns of gene expression, which notably included CREB1. Reprogramming efficiency was significantly increased by overexpression of CREB1 and decreased by knockdown of CREB1.

    CONCLUSION: Collectively, BDL-E5 offers a valuable tool for delineating the early reprogramming pathway and clinically applicable commercial production of human iPS cells.

  5. Mitutsova V, Yeo WWY, Davaze R, Franckhauser C, Hani EH, Abdullah S, et al.
    Stem Cell Res Ther, 2017 04 18;8(1):86.
    PMID: 28420418 DOI: 10.1186/s13287-017-0539-9
    BACKGROUND: Pancreatic beta cells are unique effectors in the control of glucose homeostasis and their deficiency results in impaired insulin production leading to severe diabetic diseases. Here, we investigated the potential of a population of nonadherent muscle-derived stem cells (MDSC) from adult mouse muscle to differentiate in vitro into beta cells when transplanted as undifferentiated stem cells in vivo to compensate for beta-cell deficiency.

    RESULTS: In vitro, cultured MDSC spontaneously differentiated into insulin-expressing islet-like cell clusters as revealed using MDSC from transgenic mice expressing GFP or mCherry under the control of an insulin promoter. Differentiated clusters of beta-like cells co-expressed insulin with the transcription factors Pdx1, Nkx2.2, Nkx6.1, and MafA, and secreted significant levels of insulin in response to glucose challenges. In vivo, undifferentiated MDSC injected into streptozotocin (STZ)-treated mice engrafted within 48 h specifically to damaged pancreatic islets and were shown to differentiate and express insulin 10-12 days after injection. In addition, injection of MDSC into hyperglycemic diabetic mice reduced their blood glucose levels for 2-4 weeks.

    CONCLUSION: These data show that MDSC are capable of differentiating into mature pancreatic beta islet-like cells, not only upon culture in vitro, but also in vivo after systemic injection in STZ-induced diabetic mouse models. Being nonteratogenic, MDSC can be used directly by systemic injection, and this potential reveals a promising alternative avenue in stem cell-based treatment of beta-cell deficiencies.

  6. Rengasamy M, Singh G, Fakharuzi NA, Siddikuzzaman, Balasubramanian S, Swamynathan P, et al.
    Stem Cell Res Ther, 2017 06 13;8(1):143.
    PMID: 28610623 DOI: 10.1186/s13287-017-0595-1
    BACKGROUND: Mesenchymal stromal cells (MSCs) from various tissues have shown moderate therapeutic efficacy in reversing liver fibrosis in preclinical models. Here, we compared the relative therapeutic potential of pooled, adult human bone marrow (BM)- and neonatal Wharton's jelly (WJ)-derived MSCs to treat CCl4-induced liver fibrosis in rats.

    METHODS: Sprague-Dawley rats were injected with CCl4 for 8 weeks to induce irreversible liver fibrosis. Ex-vivo expanded, pooled human MSCs obtained from BM and WJ were intravenously administered into rats with liver fibrosis at a dose of 10 × 106 cells/animal. Sham control and vehicle-treated animals served as negative and disease controls, respectively. The animals were sacrificed at 30 and 70 days after cell transplantation and hepatic-hydroxyproline content, histopathological, and immunohistochemical analyses were performed.

    RESULTS: BM-MSCs treatment showed a marked reduction in liver fibrosis as determined by Masson's trichrome and Sirius red staining as compared to those treated with the vehicle. Furthermore, hepatic-hydroxyproline content and percentage collagen proportionate area were found to be significantly lower in the BM-MSCs-treated group. In contrast, WJ-MSCs treatment showed less reduction of fibrosis at both time points. Immunohistochemical analysis of BM-MSCs-treated liver samples showed a reduction in α-SMA+ myofibroblasts and increased number of EpCAM+ hepatic progenitor cells, along with Ki-67+ and human matrix metalloprotease-1+ (MMP-1+) cells as compared to WJ-MSCs-treated rat livers.

    CONCLUSIONS: Our findings suggest that BM-MSCs are more effective than WJ-MSCs in treating liver fibrosis in a CCl4-induced model in rats. The superior therapeutic activity of BM-MSCs may be attributed to their expression of certain MMPs and angiogenic factors.

  7. Mot YY, Othman I, Sharifah SH
    Stem Cell Res Ther, 2017 01 23;8(1):5.
    PMID: 28114965 DOI: 10.1186/s13287-016-0457-2
    BACKGROUND: Mesenchymal stromal cells (MSCs) and Ophiophagus hannah L-amino acid oxidase (Oh-LAAO) have been reported to exhibit antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA). Published data have indicated that synergistic antibacterial effects could be achieved by co-administration of two or more antimicrobial agents. However, this hypothesis has not been proven in a cell- and protein-based combination. In this study, we investigate if co-administration of adipose-derived MSCs and Oh-LAAO into a mouse model of MRSA-infected wounds would be able to result in a synergistic antibacterial effect.

    METHODS: MSCs and Oh-LAAO were isolated and characterized by standard methodologies. The effects of the experimental therapies were evaluated in C57/BL6 mice. The animal study groups consisted of full-thickness uninfected and MRSA-infected wound models which received Oh-LAAO, MSCs, or both. Oh-LAAO was administered directly on the wound while MSCs were delivered via intradermal injections. The animals were housed individually with wound measurements taken on days 0, 3, and 7. Histological analyses and bacterial enumeration were performed on wound biopsies to determine the efficacy of each treatment.

    RESULTS: Immunophenotyping and differentiation assays conducted on isolated MSCs indicated expression of standard cell surface markers and plasticity which corresponds to published data. Characterization of Oh-LAAO by proteomics, enzymatic, and antibacterial assays confirmed the identity, purity, and functionality of the enzyme prior to use in our subsequent studies. Individual treatments with MSCs and Oh-LAAO in the infected model resulted in reduction of MRSA load by one order of magnitude to the approximate range of 6 log10 colony-forming units (CFU) compared to untreated controls (7.3 log10 CFU). Similar wound healing and improvements in histological parameters were observed between the two groups. Co-administration of MSCs and Oh-LAAO reduced bacterial burden by approximately two orders of magnitude to 5.1 log10 CFU. Wound closure measurements and histology analysis of biopsies obtained from the combinational therapy group indicated significant enhancement in the wound healing process compared to all other groups.

    CONCLUSIONS: We demonstrated that co-administration of MSCs and Oh-LAAO into a mouse model of MRSA-infected wounds exhibited a synergistic antibacterial effect which significantly reduced the bacterial count and accelerated the wound healing process.

  8. Nguyen PNN, Choo KB, Huang CJ, Sugii S, Cheong SK, Kamarul T
    Stem Cell Res Ther, 2017 09 29;8(1):214.
    PMID: 28962647 DOI: 10.1186/s13287-017-0666-3
    BACKGROUND: Introduction of the transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM) is able to 'reprogram' somatic cells to become induced pluripotent stem cells (iPSCs). Several microRNAs (miRNAs) are known to enhance reprogramming efficiency when co-expressed with the OSKM factors. The primate-specific chromosome 19 miRNA cluster (C19MC) is essential in primate reproduction, development, and differentiation. miR-524-5p, a C19MC member, is highly homologous to the reprogramming miR-520d-5p; we also reported that miR-524-5p was expressed in iPSCs but not mesenchymal stem cells (MSCs). This study aimed to elucidate possible contributions of miR-524-5p to the reprogramming process.

    METHODS: A miR-524-5p precursor was introduced into human fibroblast HFF-1 in the presence of OSKM, and the relative number of embryonic stem cell (ESC)-like colonies that stained positively with alkaline phosphatase (AP) and Nanog were quantified to determine reprogramming efficiency. A miR-524-5p mimic was transfected to MSCs to investigate the effects of miR-524-5p on TP53INP1, ZEB2, and SMAD4 expression by real-time polymerase chain reaction (PCR) and Western blot. Direct gene targeting was confirmed by luciferase activity. A phylogenetic tree of TP53INP1 was constructed by the Clustal method. Contribution of miR-524-5p to cell proliferation and apoptosis was examined by cell counts, BrdU, MTT, and cell death assays, and pluripotency gene expression by real-time PCR.

    RESULTS: Co-expressing the miR-524 precursor with OSKM resulted in a two-fold significant increase in the number of AP- and Nanog-positive ESC-like colonies, indicating a role for miR-524-5p in reprogramming. The putative target, TP53INP1, showed an inverse expression relationship with miR-524-5p; direct TP53INP1 targeting was confirmed in luciferase assays. miR-524-5p-induced TP53INP1 downregulation enhanced cell proliferation, suppressed apoptosis, and upregulated the expression of pluripotency genes, all of which are critical early events of the reprogramming process. Interestingly, the TP53INP1 gene may have co-evolved late with the primate-specific miR-524-5p. miR-524-5p also promoted mesenchymal-to-epithelial transition (MET), a required initial event of reprogramming, by directly targeting the epithelial-to-mesenchymal transition (EMT)-related genes, ZEB2 and SMAD4.

    CONCLUSIONS: Via targeting TP53INP1, ZEB2, and SMAD4, miR-524-5p contributes to the early stage of inducing pluripotency by promoting cell proliferation, inhibiting apoptosis, upregulating expression of pluripotency genes, and enhancing MET. Other C19MC miRNAs may have similar reprogramming functions.

  9. Bogomiakova ME, Sekretova EK, Anufrieva KS, Khabarova PO, Kazakova AN, Bobrovsky PA, et al.
    Stem Cell Res Ther, 2023 Apr 11;14(1):77.
    PMID: 37038186 DOI: 10.1186/s13287-023-03308-5
    BACKGROUND: Dozens of transplants generated from pluripotent stem cells are currently in clinical trials. The creation of patient-specific iPSCs makes personalized therapy possible due to their main advantage of immunotolerance. However, some reports have claimed recently that aberrant gene expression followed by proteome alterations and neoantigen formation can result in iPSCs recognition by autologous T-cells. Meanwhile, the possibility of NK-cell activation has not been previously considered. This study focused on the comparison of autologous and allogeneic immune response to iPSC-derived cells and isogeneic parental somatic cells used for reprogramming.

    METHODS: We established an isogeneic cell model consisting of parental dermal fibroblasts, fibroblast-like iPSC-derivatives (iPS-fibro) and iPS-fibro lacking beta-2-microglobulin (B2M). Using the cells obtained from two patients, we analyzed the activation of autologous and allogeneic T-lymphocytes and NK-cells co-cultured with target cells.

    RESULTS: Here we report that cells differentiated from iPSCs can be recognized by NK-cells rather than by autologous T-cells. We observed that iPS-fibro elicited a high level of NK-cell degranulation and cytotoxicity, while isogeneic parental skin fibroblasts used to obtain iPSCs barely triggered an NK-cell response. iPSC-derivatives with B2M knockout did not cause an additional increase in NK-cell activation, although they were devoid of HLA-I, the major inhibitory molecules for NK-cells. Transcriptome analysis revealed a significant imbalance of ligands for activating and inhibitory NK-cell receptors in iPS-fibro. Compared to parental fibroblasts, iPSC-derivatives had a reduced expression of HLA-I simultaneously with an increased gene expression of major activating ligands, such as MICA, NECTIN2, and PVR. The lack of inhibitory signals might be due to insufficient maturity of cells differentiated from iPSCs. In addition, we showed that pretreatment of iPS-fibro with proinflammatory cytokine IFNγ restored the ligand imbalance, thereby reducing the degranulation and cytotoxicity of NK-cells.

    CONCLUSION: In summary, we showed that iPSC-derived cells can be sensitive to the cytotoxic potential of autologous NK-cells regardless of HLA-I status. Thus, the balance of ligands for NK-cell receptors should be considered prior to iPSC-based cell therapies. Trial registration Not applicable.

  10. Seet WT, Mat Afandi MA, Ishak MF, Hassan MNF, Ahmat N, Ng MH, et al.
    Stem Cell Res Ther, 2023 Oct 20;14(1):298.
    PMID: 37858277 DOI: 10.1186/s13287-023-03536-9
    Treatments for skin injuries have recently advanced tremendously. Such treatments include allogeneic and xenogeneic transplants and skin substitutes such as tissue-engineered skin, cultured cells, and stem cells. The aim of this paper is to discuss the general overview of the quality assurance and quality control implemented in the manufacturing of cell and tissue product, with emphasis on our experience in the manufacturing of MyDerm®, an autologous bilayered human skin substitute. Manufacturing MyDerm® requires multiple high-risk open manipulation steps, such as tissue processing, cell culture expansion, and skin construct formation. To ensure the safety and efficacy of this product, the good manufacturing practice (GMP) facility should establish a well-designed quality assurance and quality control (QA/QC) programme. Standard operating procedures (SOP) should be implemented to ensure that the manufacturing process is consistent and performed in a controlled manner. All starting materials, including tissue samples, culture media, reagents, and consumables must be verified and tested to confirm their safety, potency, and sterility. The final products should also undergo a QC testing series to guarantee product safety, efficacy, and overall quality. The aseptic techniques of cleanroom operators and the environmental conditions of the facility are also important, as they directly influence the manufacturing of good-quality products. Hence, personnel training and environmental monitoring are necessary to maintain GMP compliance. Furthermore, risk management implementation is another important aspect of QA/QC, as it is used to identify and determine the risk level and to perform risk assessments when necessary. Moreover, procedures for non-conformance reporting should be established to identify, investigate, and correct deviations that occur during manufacturing. This paper provides insight and an overview of the QA/QC aspect during MyDerm® manufacturing in a GMP-compliant facility in the Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia.
  11. Zhang S, Yahaya BH, Pan Y, Liu Y, Lin J
    Stem Cell Res Ther, 2023 Nov 13;14(1):327.
    PMID: 37957675 DOI: 10.1186/s13287-023-03551-w
    Chemotherapy can cause ovarian dysfunction and infertility since the ovary is extremely sensitive to chemotherapeutic drugs. Apart from the indispensable role of the ovary in the overall hormonal milieu, ovarian dysfunction also affects many other organ systems and functions including sexuality, bones, the cardiovascular system, and neurocognitive function. Although conventional hormone replacement therapy can partly relieve the adverse symptoms of premature ovarian insufficiency (POI), the treatment cannot fundamentally prevent deterioration of POI. Therefore, effective treatments to improve chemotherapy-induced POI are urgently needed, especially for patients desiring fertility preservation. Recently, mesenchymal stem cell (MSC)-based therapies have resulted in promising improvements in chemotherapy-induced ovary dysfunction by enhancing the anti-apoptotic capacity of ovarian cells, preventing ovarian follicular atresia, promoting angiogenesis and improving injured ovarian structure and the pregnancy rate. These improvements are mainly attributed to MSC-derived biological factors, functional RNAs, and even mitochondria, which are directly secreted or indirectly translocated with extracellular vesicles (microvesicles and exosomes) to repair ovarian dysfunction. Additionally, as a novel source of MSCs, menstrual blood-derived endometrial stem cells (MenSCs) have exhibited promising therapeutic effects in various diseases due to their comprehensive advantages, such as periodic and non-invasive sample collection, abundant sources, regular donation and autologous transplantation. Therefore, this review summarizes the efficacy of MSCs transplantation in improving chemotherapy-induced POI and analyzes the underlying mechanism, and further discusses the benefit and existing challenges in promoting the clinical application of MenSCs in chemotherapy-induced POI.
  12. Ridzuan N, Zakaria N, Widera D, Sheard J, Morimoto M, Kiyokawa H, et al.
    Stem Cell Res Ther, 2021 01 12;12(1):54.
    PMID: 33436065 DOI: 10.1186/s13287-020-02088-6
    BACKGROUND: Chronic obstructive pulmonary disease (COPD) is an incurable and debilitating chronic disease characterized by progressive airflow limitation associated with abnormal levels of tissue inflammation. Therefore, stem cell-based approaches to tackle the condition are currently a focus of regenerative therapies for COPD. Extracellular vesicles (EVs) released by all cell types are crucially involved in paracrine, extracellular communication. Recent advances in the field suggest that stem cell-derived EVs possess a therapeutic potential which is comparable to the cells of their origin.

    METHODS: In this study, we assessed the potential anti-inflammatory effects of human umbilical cord mesenchymal stem cell (hUC-MSC)-derived EVs in a rat model of COPD. EVs were isolated from hUC-MSCs and characterized by the transmission electron microscope, western blotting, and nanoparticle tracking analysis. As a model of COPD, male Sprague-Dawley rats were exposed to cigarette smoke for up to 12 weeks, followed by transplantation of hUC-MSCs or application of hUC-MSC-derived EVs. Lung tissue was subjected to histological analysis using haematoxylin and eosin staining, Alcian blue-periodic acid-Schiff (AB-PAS) staining, and immunofluorescence staining. Gene expression in the lung tissue was assessed using microarray analysis. Statistical analyses were performed using GraphPad Prism 7 version 7.0 (GraphPad Software, USA). Student's t test was used to compare between 2 groups. Comparison among more than 2 groups was done using one-way analysis of variance (ANOVA). Data presented as median ± standard deviation (SD).

    RESULTS: Both transplantation of hUC-MSCs and application of EVs resulted in a reduction of peribronchial and perivascular inflammation, alveolar septal thickening associated with mononuclear inflammation, and a decreased number of goblet cells. Moreover, hUC-MSCs and EVs ameliorated the loss of alveolar septa in the emphysematous lung of COPD rats and reduced the levels of NF-κB subunit p65 in the tissue. Subsequent microarray analysis revealed that both hUC-MSCs and EVs significantly regulate multiple pathways known to be associated with COPD.

    CONCLUSIONS: In conclusion, we show that hUC-MSC-derived EVs effectively ameliorate by COPD-induced inflammation. Thus, EVs could serve as a new cell-free-based therapy for the treatment of COPD.

  13. Chakraborty S, Ong WK, Yau WWY, Zhou Z, Bhanu Prakash KN, Toh SA, et al.
    Stem Cell Res Ther, 2021 02 04;12(1):109.
    PMID: 33541392 DOI: 10.1186/s13287-021-02179-y
    BACKGROUND: Effective stem cell therapy is dependent on the stem cell quality that is determined by their differentiation potential, impairment of which leads to poor engraftment and survival into the target cells. However, limitations in our understanding and the lack of reliable markers that can predict their maturation efficacies have hindered the development of stem cells as an effective therapeutic strategy. Our previous study identified CD10, a pro-adipogenic, depot-specific prospective cell surface marker of human adipose-derived stem cells (ASCs). Here, we aim to determine if CD10 can be used as a prospective marker to predict mature adipocyte quality and play a direct role in adipocyte maturation.

    METHODS: We first generated 14 primary human subject-derived ASCs and stable immortalized CD10 knockdown and overexpression lines for 4 subjects by the lentiviral transduction system. To evaluate the role of CD10 in adipogenesis, the adipogenic potential of the human subject samples were scored against their respective CD10 transcript levels. Assessment of UCP1 expression levels was performed to correlate CD10 levels to the browning potential of mature ASCs. Quantitative polymerase chain reaction (qPCR) and Western blot analysis were performed to determine CD10-dependent regulation of various targets. Seahorse analysis of oxidative metabolism and lipolysis assay were studied. Lastly, as a proof-of-concept study, we used CD10 as a prospective marker for screening nuclear receptor ligands library.

    RESULTS: We identified intrinsic CD10 levels as a positive determinant of adipocyte maturation as well as browning potential of ASCs. Interestingly, CD10 regulates ASC's adipogenic maturation non-canonically by modulating endogenous lipolysis without affecting the classical peroxisome proliferator-activated receptor gamma (PPARγ)-dependent adipogenic pathways. Furthermore, our CD10-mediated screening analysis identified dexamethasone and retinoic acid as stimulator and inhibitor of adipogenesis, respectively, indicating CD10 as a useful biomarker for pro-adipogenic drug screening.

    CONCLUSION: Overall, we establish CD10 as a functionally relevant ASC biomarker, which may be a prerequisite to identify high-quality cell populations for improving metabolic diseases.

  14. Thekkeparambil Chandrabose S, Sriram S, Subramanian S, Cheng S, Ong WK, Rozen S, et al.
    Stem Cell Res Ther, 2018 03 20;9(1):68.
    PMID: 29559008 DOI: 10.1186/s13287-018-0796-2
    BACKGROUND: While a shift towards non-viral and animal component-free methods of generating induced pluripotent stem (iPS) cells is preferred for safer clinical applications, there is still a shortage of reliable cell sources and protocols for efficient reprogramming.

    METHODS: Here, we show a robust episomal and xeno-free reprogramming strategy for human iPS generation from dental pulp stem cells (DPSCs) which renders good efficiency (0.19%) over a short time frame (13-18 days).

    RESULTS: The robustness of DPSCs as starting cells for iPS induction is found due to their exceptional inherent stemness properties, developmental origin from neural crest cells, specification for tissue commitment, and differentiation capability. To investigate the epigenetic basis for the high reprogramming efficiency of DPSCs, we performed genome-wide DNA methylation analysis and found that the epigenetic signature of DPSCs associated with pluripotent, developmental, and ecto-mesenchymal genes is relatively close to that of iPS and embryonic stem (ES) cells. Among these genes, it is found that overexpression of PAX9 and knockdown of HERV-FRD improved the efficiencies of iPS generation.

    CONCLUSION: In conclusion, our study provides underlying epigenetic mechanisms that establish a robust platform for efficient generation of iPS cells from DPSCs, facilitating industrial and clinical use of iPS technology for therapeutic needs.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links