Displaying all 2 publications

Abstract:
Sort:
  1. Ngaini Z, Mortadza NA
    Nat Prod Res, 2019 Dec;33(24):3507-3514.
    PMID: 29911437 DOI: 10.1080/14786419.2018.1486310
    Chemical modification of medicines from natural product-based molecules has become of interest in recent years. In this study, a series of halogenated azo derivatives 1a-d were synthesised via coupling reaction, followed by Steglich esterification with aspirin (a natural product derivative) to form azo derivatives 2a-d. While, halogenated azo-aspirin 3a-d were synthesised via direct coupling reaction of aspirin and diazonium salt. Bacteriostatic activity was demonstrated against E. coli and S. aureus via turbidimetric kinetic method. Compound 3a-d showed excellent antibacterial activities against E. coli (MIC 75-94 ppm) and S. aureus (MIC 64-89 ppm) compared to ampicillin (MIC 93 and 124 ppm respectively), followed by 1a-d and 2a-d. The presence of reactive groups of -OH, N=N, C=O and halogens significantly contribute excellent interaction towards E. coli and S. aureus. Molecular dockings analysis of 3a against MIaC protein showed binding free energy of -7.2 kcal/mol (E. coli) and -6.6 kcal/mol (S. aureus).
  2. Ngaini Z, Hissam MA, Mortadza NA, Abd Halim AN, Daud AI
    Nat Prod Res, 2023 Sep 26.
    PMID: 37752781 DOI: 10.1080/14786419.2023.2262713
    Chemical modification of active scaffolds from natural products has gained interest in pharmaceutical industries. Nevertheless, the metabolites extraction is time-consuming while the lead is frequently mismatched with the receptor. Here, the diazo coupling approach was introduced to generate a series of vanillin derivatives featuring halogenated azo dyes (1a-h). The vanillin derivatives showed effective inhibition of S. aureus (7-9 mm) and E. coli (7-8 mm) compared to the parent vanillin, while 1b had the highest inhibition zone (9 mm) against S. aureus comparable to the reference ampicillin. The presence of N = N, C = O, -OH, -OCH3 and halogens established strategic binding interactions with the receptor. The potential vanillin-azo as an antimicrobial drug was supported by in silico docking with penicillin-binding proteins and DFT (using Gaussian 09) with binding affinity -7.5 kcal/mol and energy gap (Egap) 3.77 eV, respectively. This study represents a significant advancement in drug discovery for effective antibiotics with excellent properties.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links