This paper focuses on the detection of retinal blood vessels which play a vital role in reducing the proliferative diabetic retinopathy and for preventing the loss of visual capability. The proposed algorithm which takes advantage of the powerful preprocessing techniques such as the contrast enhancement and thresholding offers an automated segmentation procedure for retinal blood vessels. To evaluate the performance of the new algorithm, experiments are conducted on 40 images collected from DRIVE database. The results show that the proposed algorithm performs better than the other known algorithms in terms of accuracy. Furthermore, the proposed algorithm being simple and easy to implement, is best suited for fast processing applications.
The next generation of medical information system will integrate multimedia data to assist physicians in clinical decision-making, diagnoses, teaching, and research. This paper describes MIARS (Medical Image Annotation and Retrieval System). MIARS not only provides automatic annotation, but also supports text based as well as image based retrieval strategies, which play important roles in medical training, research, and diagnostics. The system utilizes three trained classifiers, which are trained using training images. The goal of these classifiers is to provide multi-level automatic annotation. Another main purpose of the MIARS system is to study image semantic retrieval strategy by which images can be retrieved according to different levels of annotation.
Image retrieval at the semantic level mostly depends on image annotation or image classification. Image annotation performance largely depends on three issues: (1) automatic image feature extraction; (2) a semantic image concept modeling; (3) algorithm for semantic image annotation. To address first issue, multilevel features are extracted to construct the feature vector, which represents the contents of the image. To address second issue, domain-dependent concept hierarchy is constructed for interpretation of image semantic concepts. To address third issue, automatic multilevel code generation is proposed for image classification and multilevel image annotation. We make use of the existing image annotation to address second and third issues. Our experiments on a specific domain of X-ray images have given encouraging results.
The demand for automatically classification of medical X-ray images is rising faster than ever. In this paper, an approach is presented to gain high accuracy rate for those classes of medical database with high ratio of intraclass variability and interclass similarities. The classification framework was constructed via annotation using the following three techniques: annotation by binary classification, annotation by probabilistic latent semantic analysis, and annotation using top similar images. Next, final annotation was constructed by applying ranking similarity on annotated keywords made by each technique. The final annotation keywords were then divided into three levels according to the body region, specific bone structure in body region as well as imaging direction. Different weights were given to each level of the keywords; they are then used to calculate the weightage for each category of medical images based on their ground truth annotation. The weightage computed from the generated annotation of query image was compared with the weightage of each category of medical images, and then the query image would be assigned to the category with closest weightage to the query image. The average accuracy rate reported is 87.5 %.