Stratified sampling procedure was employed to collect a total of 40 samples; 2 from each stratum, measuring an approximate dimension of 3.25 km(2) of the actual sample site. Appropriate volumes were then evaporated and transferred into clean stainless steel planchets (ISO 9696 and ISO 9697). An eight channel gas-flow proportional counting system connected to a microprocessor loaded with a spreadsheet programme (Quarttro-Pro) and graphic programme (Multiplan) initially calibrated for efficiency was employed to count the background and the prepared samples. A mean efficiency of 33.44 and 41.24 % for the respective alpha and beta sources was obtained. A low background activity was also observed with a mean of 0.165 Bq for alpha and 1.119 Bq for beta. The gross alpha and beta activity concentrations in the water were found to range from 80 +/- 0.05 to 2300 +/- 0.41 Bq m(-3) and 120 +/- 0.08 to 4970 +/- 0.78 Bq m(-3), respectively. This clearly indicate areas of elevated alpha and beta activity concentrations of 37.5 and 47.5 %, respectively when compared with the International Commission for Radiological Protection (1991) maximum acceptable values of 500 Bq m(-3) for alpha and 1000 Bq m(-3) for beta.
Despite the availability of Newcastle disease (ND) vaccines for more than six decades, disease outbreaks continue to occur with huge economic consequences to the global poultry industry. The aim of this study is to develop a safe and effective inactivated vaccine based on a recently isolated Newcastle disease virus (NDV) strain IBS025/13 and evaluate its protective efficacy in chicken following challenge with a highly virulent genotype VII isolate. Firstly, high titre of IBS025/13 was exposed to various concentrations of binary ethylenimine (BEI) to determine the optimal conditions for complete inactivation of the virus. The inactivated virus was then prepared in form of a stable water-in-oil emulsion of black seed oil (BSO) or Freund's incomplete adjuvant (FIA) and used as vaccines in specific pathogen-free chicken. Efficacy of various vaccine preparations was also evaluated based on the ability of the vaccine to protect against clinical disease, mortality and virus shedding following challenge with highly virulent genotype\VII NDV isolate. The results indicate that exposure of NDV IBS025/13 to 10 mM of BEI for 21 h at 37 °C could completely inactivate the virus without tempering with the structural integrity of the viral hemagglutin-neuraminidase protein. More so, the inactivated vaccines adjuvanted with either BSO- or FIA-induced high hemagglutination inhibition antibody titre that protected the vaccinated birds against clinical disease and in some cases virus shedding, especially when used together with live attenuated vaccines. Thus, genotype VII-based NDV-inactivated vaccines formulated in BSO could substantially improve poultry disease control particularly when combined with live attenuated vaccines.
Conservation and preservation of freshwater is increasingly becoming important as the global population grows. Presently, enormous volumes of freshwater are used to mix concrete. This paper reports experimental findings regarding the feasibility of using treated effluents as alternatives to freshwater in mixing concrete. Samples were obtained from three effluent sources: heavy industry, a palm-oil mill and domestic sewage. The effluents were discharge into public drain without danger to human health and natural environment. Chemical compositions and physical properties of the treated effluents were investigated. Fifteen compositional properties of each effluent were correlated with the requirements set out by the relevant standards. Concrete mixes were prepared using the effluents and freshwater to establish a base for control performance. The concrete samples were evaluated with regard to setting time, workability, compressive strength and permeability. The results show that except for some slight excesses in total solids and pH, the properties of the effluents satisfy the recommended disposal requirements. Two concrete samples performed well for all of the properties investigated. In fact, one sample was comparatively better in compressive strength than the normal concrete; a 9.4% increase was observed at the end of the curing period. Indeed, in addition to environmental conservation, the use of treated effluents as alternatives to freshwater for mixing concrete could save a large amount of freshwater, especially in arid zones.
Measurements of (222)Rn activity concentration were carried out in 39 samples collected from the domestic and drinking water sources used in the island and mainland of Penang, northern peninsular, Malaysia. The measured activity concentrations ranged from 7.49 to 26.25 Bq l(-1), 0.49 to 9.72 Bq l(-1) and 0.58 to 2.54 Bq l(-1) in the raw, treated and bottled water samples collected, respectively. This indicated relatively high radon concentrations compared with that from other parts of the world, which still falls below the WHO recommended treatment level of 100 Bq l(-1). From this data, the age-dependent associated committed effective doses due to the ingestion of (222)Rn as a consequence of direct consumption of drinking water were calculated. The committed effective doses from (222)Rn resulting from 1 y's consumption of these water were estimated to range from 0.003 to 0.048, 0.001 to 0.018 and 0.002 to 0.023 mSv y(-1), for age groups 0-1, 2-16 and >16 y, respectively.
An octa-nuclear heterobimetallic complex [Y2Cu6Cl0.7(dmae)6(OAc)7.3(OH)4(H2O)2]·3H2O·0.3CH3C6H5 (dmae = dimethylaminoethanoate; OAc = acetato) was synthesized, characterized by melting point analysis, elemental analysis, FT-IR, and single crystal X-ray diffraction analysis and implemented at 600 °C under an oxygen atmosphere for the deposition of Y2CuO4-5CuO composite thin films by aerosol assisted chemical vapor deposition (AACVD). The chemical composition and surface morphology of the deposited thin film have been determined by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis that suggest the formation of impurity-free crystallite mixtures of the Y2CuO4-5CuO composite, with well-defined evenly distributed particles in the size range of 19-24 nm. An optical band gap energy of 1.82 eV was estimated by UV-visible spectrophotometry. PEC studies show that under illumination with a 150 W halogen lamp and at a potential of 0.8 V, a photocurrent density of 9.85 μA cm(-2) was obtained.