Displaying all 2 publications

Abstract:
Sort:
  1. Muhamad Sarih N, Myers P, Slater A, Slater B, Abdullah Z, Tajuddin HA, et al.
    Sci Rep, 2019 08 14;9(1):11834.
    PMID: 31413269 DOI: 10.1038/s41598-019-47847-5
    Three fluorescent organic compounds-furocoumarin (FC), dansyl aniline (DA), and 7-hydroxycoumarin-3-carboxylic acid (CC)-are mixed to produce almost pure white light emission (WLE). This novel mixture is immobilised in silica aerogel and applied as a coating to a UV LED to demonstrate its applicability as a low-cost, organic coating for WLE via simultaneous emission. In ethanol solution and when immobilised in silica aerogel, the mixture exhibits a Commission Internationale d'Eclairage (CIE) chromaticity index of (0.27, 0.33). It was observed that a broadband and simultaneous emission involving coumarin carboxylic acid, furocoumarin and dansyl aniline played a vital role in obtaining a CIE index close to that of pure white light.
  2. Sarih NM, Ciupa A, Moss S, Myers P, Slater AG, Abdullah Z, et al.
    Sci Rep, 2020 May 04;10(1):7421.
    PMID: 32366859 DOI: 10.1038/s41598-020-63262-7
    Furocoumarin (furo[3,2-c]coumarin) derivatives have been synthesized from single step, high yielding (82-92%) chemistry involving a 4-hydroxycoumarin 4 + 1 cycloaddition reaction. They are characterized by FTIR, 1H-NMR, and, for the first time, a comprehensive UV-Vis and fluorescence spectroscopy study has been carried out to determine if these compounds can serve as useful sensors. Based on the fluorescence data, the most promising furocoumarin derivative (2-(cyclohexylamino)-3-phenyl-4H-furo[3,2-c]chromen-4-one, FH), exhibits strong fluorescence (ФF = 0.48) with long fluorescence lifetime (5.6 ns) and large Stokes' shift, suggesting FH could be used as a novel fluorescent chemosensor. FH exhibits a highly selective, sensitive and instant turn-off fluorescence response to Fe3+ over other metal ions which was attributed to a charge transfer mechanism. Selectivity was demonstrated against 13 other competing metal ions (Na+, K+, Mg2+, Ca2+, Mn2+, Fe2+, Al3+, Ni2+, Cu2+, Zn2+, Co2+, Pb2+ and Ru3+) and aqueous compatibility was demonstrated in 10% MeOH-H2O solution. The FH sensor coordinates Fe3+ in a 1:2 stoichiometry with a binding constant, Ka = 5.25 × 103 M-1. This novel sensor has a limit of detection of 1.93 µM, below that of the US environmental protection agency guidelines (5.37 µM), with a linear dynamic range of ~28 (~2-30 µM) and an R2 value of 0.9975. As an exemplar application we demonstrate the potential of this sensor for the rapid measurement of Fe3+ in mineral and tap water samples demonstrating the real-world application of FH as a "turn off" fluorescence sensor.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links