Displaying all 3 publications

Abstract:
Sort:
  1. Nabi FG, Sundaraj K, Lam CK
    J Pak Med Assoc, 2021 Jan;71(1(A)):41-46.
    PMID: 33484516 DOI: 10.47391/JPMA.156
    OBJECTIVE: Breath sound has information about underlying pathology and condition of subjects. The purpose of this study was to examine asthmatic acuteness levels (Mild, Moderate, Severe) using frequency features extracted from wheeze sounds. Further, analysis was extended to observe behaviour of wheeze sounds in different datasets.

    METHODS: Segmented and validated wheeze sounds was collected from 55 asthmatic patients from the trachea and lower lung base (LLB) during tidal breathing maneuvers. Segmented wheeze sounds have been grouped in to nine datasets based on auscultation location, breath phases and a combination of phase and location. Frequency based features F25, F50, F75, F90, F99 and mean frequency (MF) were calculated from normalized power spectrum. Subsequently, multivariate analysis was performed.

    RESULTS: Generally frequency features observe statistical significance (p < 0.05) for the majority of datasets to differentiate severity level Ʌ = 0.432-0.939, F(12, 196-1534) = 2.731-11.196, p < 0.05, ɳ2 = 0.061-0.568. It was observed that selected features performed better (higher effect size) for trachea related samples Ʌ = 0.432-0.620, F(12, 196-498) = 6.575-11.196, p < 0.05, ɳ2 = 0.386-0.568.

    CONCLUSIONS: The results demonstrated dthat severity levels of asthmatic patients with tidal breathing can be identified through computerized wheeze sound analysis. In general, auscultation location and breath phases produce wheeze sounds with different characteristics.

  2. Nabi FG, Sundaraj K, Lam CK, Palaniappan R
    Comput Biol Med, 2019 01;104:52-61.
    PMID: 30439599 DOI: 10.1016/j.compbiomed.2018.10.035
    OBJECTIVE: This study aimed to investigate and classify wheeze sounds of asthmatic patients according to their severity level (mild, moderate and severe) using spectral integrated (SI) features.

    METHOD: Segmented and validated wheeze sounds were obtained from auscultation recordings of the trachea and lower lung base of 55 asthmatic patients during tidal breathing manoeuvres. The segments were multi-labelled into 9 groups based on the auscultation location and/or breath phases. Bandwidths were selected based on the physiology, and a corresponding SI feature was computed for each segment. Univariate and multivariate statistical analyses were then performed to investigate the discriminatory behaviour of the features with respect to the severity levels in the various groups. The asthmatic severity levels in the groups were then classified using the ensemble (ENS), support vector machine (SVM) and k-nearest neighbour (KNN) methods.

    RESULTS AND CONCLUSION: All statistical comparisons exhibited a significant difference (p 

  3. Nabi FG, Sundaraj K, Lam CK, Palaniappan R
    J Asthma, 2020 04;57(4):353-365.
    PMID: 30810448 DOI: 10.1080/02770903.2019.1576193
    Objective: This study aimed to statistically analyze the behavior of time-frequency features in digital recordings of wheeze sounds obtained from patients with various levels of asthma severity (mild, moderate, and severe), and this analysis was based on the auscultation location and/or breath phase. Method: Segmented and validated wheeze sounds were collected from the trachea and lower lung base (LLB) of 55 asthmatic patients during tidal breathing maneuvers and grouped into nine different datasets. The quartile frequencies F25, F50, F75, F90 and F99, mean frequency (MF) and average power (AP) were computed as features, and a univariate statistical analysis was then performed to analyze the behavior of the time-frequency features. Results: All features generally showed statistical significance in most of the datasets for all severity levels [χ2 = 6.021-71.65, p 
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links