Displaying all 5 publications

Abstract:
Sort:
  1. Shaedi N, Naharudin I, Choo CY, Wong TW
    Carbohydr Polym, 2021 Feb 15;254:117312.
    PMID: 33357875 DOI: 10.1016/j.carbpol.2020.117312
    Vitexin of Ficus deltoidea exhibits intestinal α-glucosidase inhibitory and blood glucose lowering effects. This study designs oral intestinal-specific alginate nanoparticulate system of vitexin. Nanospray-dried alginate, alginate/stearic acid and alginate-C18 conjugate nanoparticles were prepared. Stearic acid was adopted to hydrophobize the matrix and minimize premature vitexin release in stomach, whereas C-18 conjugate as immobilized fatty acid to sustain hydrophobic effect and drug release. Nanoparticles were compacted with polyethylene glycol (PEG 3000, 10,000 and 20,000). The physicochemical, drug release, in vivo blood glucose lowering and intestinal vitexin content of nanoparticles and compact were determined. Hydrophobization of alginate nanoparticles promoted premature vitexin release. Compaction of nanoparticles with PEG minimized vitexin release in the stomach, with stearic acid loaded nanoparticles exhibiting a higher vitexin release in the intestine. The introduction of stearic acid reduced vitexin-alginate interaction, conferred alginate-stearic acid mismatch, and dispersive stearic acid-induced particle breakdown with intestinal vitexin release. Use of PEG 10,000 in compaction brought about PEG-nanoparticles interaction that negated initial vitexin release. The PEG dissolution in intestinal phase subsequently enabled particle breakdown and vitexin release. The PEG compacted nanoparticles exhibited oral intestinal-specific vitexin release, with positive blood glucose lowering and enhanced intestinal vitexin content in vivo.
  2. Md Ramli SH, Wong TW, Naharudin I, Bose A
    Carbohydr Polym, 2016 Nov 05;152:370-381.
    PMID: 27516284 DOI: 10.1016/j.carbpol.2016.07.021
    Conventional alginate pellets underwent rapid drug dissolution and failed to exert colon targeting unless subjected to complex coating. This study designed coatless delayed-release oral colon-specific alginate pellets for ulcerative colitis treatment. Alginate pellets, formulated with water-insoluble ethylcellulose and various calcium salts, were prepared using solvent-free melt pelletization technique which prevented reaction between processing materials during agglomeration and allowed reaction to initiate only in dissolution. Combination of acid-soluble calcium carbonate and highly water-soluble calcium acetate did not impart colon-specific characteristics to pellets due to pore formation in fragmented matrices. Combination of moderately water-soluble calcium phosphate and calcium acetate delayed drug release due to rapid alginate crosslinking by soluble calcium from acetate salt followed by sustaining alginate crosslinking by calcium phosphate. The use of 1:3 ethylcellulose-to-alginate enhanced the sustained drug release attribute. The ethylcellulose was able to maintain the pellet integrity without calcium acetate. Using hydrophobic prednisolone as therapeutic, hydrophilic alginate pellets formulated with hydrophobic ethylcellulose and moderately polar calcium phosphate exhibited colon-specific in vitro drug release and in vivo anti-inflammatory action. Coatless oral colon-specific alginate pellets can be designed through optimal formulation with melt pelletization as the processing technology.
  3. Alhajj N, Zakaria Z, Naharudin I, Ahsan F, Li W, Wong TW
    Asian J Pharm Sci, 2020 May;15(3):374-384.
    PMID: 32636955 DOI: 10.1016/j.ajps.2019.02.001
    Chitosan nanoparticles are exhalation prone and agglomerative to pulmonary inhalation. Blending nanoparticles with lactose microparticles (∼5 µm) could mutually reduce their agglomeration through surface adsorption phenomenon. The chitosan nanoparticles of varying size, size distribution, zeta potential, crystallinity, shape and surface roughness were prepared by spray drying technique as a function of chitosan, surfactant and processing conditions. Lactose-polyethylene glycol 3000 (PEG3000) microparticles were similarly prepared. The chitosan nanoparticles, physically blended with fine lactose-PEG3000 microparticles, exhibited a comparable inhalation performance with the commercial dry powder inhaler products (fine particle fraction between 20% and 30%). Cascade impactor analysis indicated that the aerosolization and inhalation performance of chitosan nanoparticles was promoted by their higher zeta potential and circularity, and larger size attributes of which led to reduced inter-nanoparticulate aggregation and favored nanoparticles interacting with lactose-PEG3000 micropaticles that aided their delivery into deep and peripheral lungs.
  4. Chachuli SH, Nawaz A, Shah K, Naharudin I, Wong TW
    Pharm Res, 2016 06;33(6):1497-508.
    PMID: 26951565 DOI: 10.1007/s11095-016-1893-5
    PURPOSE: Pulmonary infection namely tuberculosis is characterized by alveolar macrophages harboring a large microbe population. The chitosan nanoparticles exhibit fast extracellular drug release in aqueous biological milieu. This study investigated the matrix effects of chitosan nanoparticles on extracellular drug diffusion into macrophages.

    METHODS: Oligo, low, medium and high molecular weight chitosan nanoparticles were prepared by nanospray drying technique. These nanoparticles were incubated with alveolar macrophages in vitro and had model drug sodium fluorescein added into the same cell culture. The diffusion characteristics of sodium fluorescein and nanoparticle behavior were investigated using fluorescence microscopy, scanning electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy techniques.

    RESULTS: The oligochitosan nanoparticles enabled macrophage membrane fluidization with the extent of sodium fluorescein entry into macrophages being directly governed by the nanoparticle loading. Using nanoparticles made of higher molecular weight chitosan, sodium fluorescein permeation into macrophages was delayed due to viscous chitosan diffusion barrier at membrane boundary.

    CONCLUSION: Macrophage-chitosan nanoparticle interaction at membrane interface dictates drug migration into cellular domains.

  5. Al-Ajalein AAS, Shafie MH, Yap PG, Kassim MA, Naharudin I, Wong TW, et al.
    Int J Biol Macromol, 2023 Jan 31;226:321-335.
    PMID: 36502951 DOI: 10.1016/j.ijbiomac.2022.12.023
    The anti-hyperpigmentation effect and tyrosinase inhibitory mechanism of cinnamon polysaccharides have not been reported. The current study focused on the extraction of polysaccharides from Cinnamomum cassia bark using microwave-assisted approach and optimization of the extraction process (i.e., microwave power, irradiation time and buffer-to-sample ratio) by Box-Behnken design to obtain a high yield of polysaccharides with high sun protection factor (SPF), anti-hyperpigmentation and antioxidant activities. The extracted pectic-polysaccharides had low molecular weight and degree of esterification. The optimal extraction process had polysaccharides characterized by (a) monophenolase inhibitory activity = 97.5 %; (b) diphenolase inhibitory activity = 99.4 %; (c) ferric reducing antioxidant power = 4.4 mM; (d) SPF = 6.1; (e) yield = 13.7 %. The SPF, tyrosinase inhibitory and antioxidant activities were primarily contributed by the polysaccharides. In conclusion, the polysaccharides from C. cassia could be an alternative therapeutic source for skin hyperpigmentation treatment.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links